首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A couple of experiments were conducted to estimate the optimal temperature effect on growth of Chinese shrimp (Penaeus chinensis). The equation describing growth-temperature relationship derived from the first experiment with temperature ranging from 16° to 31°C was found linear as the following:
G = -0.005667 + 0.001103 T
,where G and T are daily growth rate and temperature, respectively.The second experiment indicated that the daily growth rate was a quadratic function of temperature at the limits of 27° and 35°C. The equation was
G = -0.339587 + 0.023476 T − 0.000375 T2
.The optimal temperature in terms of maximum growth was 31.26°C.  相似文献   

2.
The effect of meal size (shrimp Crangon crangon) [0.83–18.82% dry body weight (Dw)] on specific dynamic action (SDA) was assessed in cuttlefish Sepia officinalis (1.03–6.25 g Dw) held at 15 and 20°C. Cuttlefish <2 g significantly expended less energy in feeding and digesting their meal than cuttlefish >2 g when given the same quantity of food. Handling, eating and digesting a shrimp meal was temperature dependent with cuttlefish processing and digesting a similar sized shrimp meal faster at 20°C than at 15°C. The proportional increase in oxygen consumption (2.07 ± 0.02) was not correlated with feeding rate (FR) and was independent of temperature and cuttlefish size. The SDA peak was not correlated with FRs, and increased as cuttlefish size and temperature increased. The mean SDA coefficient was 0.87 ± 0.07% of the ingested energy; one of the lowest SDA values recorded amongst vertebrates and invertebrates. Daily energy requirements (KJ day−1) for S. officinalis were calculated from laboratory estimates of energy losses due to standard (MO2 Standard), routine (MO2 Routine) and feeding (MO2 SDA) oxygen consumption. Laboratory estimates of daily metabolic expenditures were combined with results from previous investigations to construct an energy budget for 1 and 5 g cuttlefish consuming a meal of 5 and 15% Dw at 20°C and the amount of energy available for growth was estimated to be between 35 and 80.3% of the ingested energy.  相似文献   

3.
Chabot  Denis  Ouellet  Patrick 《Marine Biology》2005,147(4):881-894
Larvae of the northern shrimp Pandalus borealis (Krøyer) are pelagic. In the Estuary and Gulf of St. Lawrence, Canada, the early stages are found in the upper 25-m of the water column in spring and early summer and are expected to experience a range of water temperatures from as low as 0°C to as high at 6°C. Little is known of the impact of water temperature on metabolic requirements of northern shrimp larvae. In this study, routine respiration (VO2), maximum respiration (electron transport system activity, ETSA) and metabolic scope for growth (MS, ETSA–VO2) of northern shrimp larvae were measured as a function of temperature (3, 5 and 8°C), developmental stage (I–V at 3°C, I–VII at 5°C and 8°C) and growth rate in dry mass. After logarithmic transformation, all three metabolic variables were linearly related to dry mass. The increase in VO2 with body mass was faster at 5°C than at 3 or 8°C, whereas with ETSA this increase was slower. As a result, MS increased more slowly with dry mass at 5°C than at 3 and 8°C. However, MS did not limit growth in this study, since it explained only 39% of the variability in growth. All three metabolic variables as well as growth varied together as a function of temperature and ontogeny. Q10 of all three metabolic variables ranged from 1.6 and 2.2 for stages I–V larvae, except for VO2 at stage I (3.9) and stage III (2.9).  相似文献   

4.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

5.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

6.
Growth of the shrimp Crangon vulgaris was studied by following the evolution of its nucleic acid concentration and total content. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) analysis were effected on homogenates of whole shrimps. Cell multiplication was estimated from evolution of total DNA content, and cell size increment from evolution of fresh weight: DNA ratio. DNA puric bases ratio and RNA monoribonucleotides percentages were constant throughout the investigation period. A decrease in DNA concentration was observed from 50 to 20 M/g dry defatted weight (DDP), when fresh weight increases from 40 to 570 mg. This decrease was more marked in the first half of the period studied (prepuberal phase). The DNA content in the whole shrimp increases with fresh weight without slowing down at sexual maturity. However, at the beginning of the prepuberal phase the cell-multiplication rate seems to be graduated rather than continuous; this is still to be explained. Cell size, calculated from fresh weight: DNA ratio, increases until the shrimp weighs 300 mg; beyond this weight, cell increment proceeds much more slowly. The weight gain of shrimps throughout the growth period studied is mainly attributable to hyperplasia — which occurs constantly — while hypertrophy insures only 21% weight increment in the largest shrimps. As protein content, RNA content is a linear function of shrimp weight. RNA:DNA ratio evolution is similar to that of cell size and protein content. We suggest that cells have attained a physiological balance when shrimps reach a weight of 300 mg.  相似文献   

7.
Gracilaria verrucosa (Hudson) Papenfuss exposed to nutrient enriched media (0.1 mM PO4; 1.0 mM NH 4 + ) by pulse feeding 2 h every third day for a period of 5 wk at 20°C and 25–30 salinity showed significantly higher rates of photosynthesis regardless of photon flux density correlated with increased pigment levels. Algae in nonenriched media showed significantly higher levels of soluble carbohydrates and decreased levels of phycoerythrin and chlorophyll a. Photosynthetic and respiratory responses to temperature 15°, 25°, 30°C and salinity (15, 25, 30 S) combinations indicate broad tolerances by both nutrient enriched and non-nutrient enriched algae. Photosynthetic and respiratory rates were highest at the high temperatures. Pulse-fed algae had significantly higher photosynthetic rates than non-nutrient enriched plants at all temperature and salinity combinations. Non-nutrient enriched algae had significantly higher respiratory rates than nutrient enriched algae at only 30°C and 15. The respiratory rates of both nutrient enriched and non-nutrient algae decreased under combinations of higher temperatures and salinities. G. verrucosa, grown without nutrients, has lower tolerances to environmental stresses.  相似文献   

8.
Adult silversides, Menidia menidia menidia (Linnaeus), were collected in early March, 1974 and maintained in 3 recirculating seawater tanks in the laboratory. Respective groups were fed Moore-Clark Fry Fine at 3, 7 and 10% of their body weight per day. The photoperiod (light intensity approximately 2000 lux) was increased in increments of 10 min/day from 12 h light to 14 h light. The water temperature was increased by 1C°/day from the ambient collection temperature, 14°C, to 22°C. Twenty-four days after beginning laboratory conditioning, fish in each tank were stripped. There was a significant increase (2, =0.05) in the number of ripe males at all three feeding levels, compared to an initial field-collected group that was checked at the beginning of the conditioning period. Females also showed significant increases in ripeness at the 7 and 10% but not at the 3% feeding level. The gonadal indices (gonad weight expressed as percentage of body weight) of both sexes were significantly greater than those measured for the initial field-collected group, but did not differ from those of adults collected from the field at the time laboratory conditioning was terminated. Techniques for maintaining eggs from field-ripened adults in the laboratory have been developed, and the effect of salinity on the percentage emergence of larvae determined. The highest emergence rate of larvae was 61% when eggs were maintained at 30 S. Emergence was 56% at 20 S and 47% at 10 S. The effect of delayed feeding on survival and growth of larvae was determined at 20 and 30 S and 25°C. Survival and growth was best for larvae fed Artemia sp. nauplii immediately after emergence at 30 S.Contribution No. 252, Gulf Breeze Environmental Research Laboratory.Associate Laboratory of the National Environmental Research Center, Corvallis, Oregon, USA.  相似文献   

9.
In order to assess possible effects of a transitory, low food supply on later development, three groups of Clyde herring larvae (Clupea harengus L.) were exposed in 1989 to different feeding regimes immediately after yolk resorption. Group 1 received a high daily ration of 80 copepods larvae–1 for 31 d, Group 2 a low daily ration of 15 copepods larva–1 for 10 d followed by a high ration (80 copepods larva–1) for 21 d and Group 3 a low ration of 15 to 20 copepods larva–1 for 31 d. After 31 d of feeding, digestive capacity, expressed as the sum of trypsin and trypsinogen, was markedly reduced in Group 2 compared to Group 1, while Group 3 had an even lower digestive capacity. After the switch from low to high ration Group 2 exhibited compensatory growth and caught up with Group 1 both in standard length and content of soluble protein. Group 3 had the lowest growth rates. Mortality was equal in Groups 1 and 2, while Group 3 showed an excess mortality of 40% of the start population. Although Group 2 larvae had caught up with Group 1 in growth at the end of the study, content of trypsin and trypsinogen in Group 2 was only half of that found in Group 1. Thus, comparing effects of a short period of food limitation on future growth, mortality and content of digestive enzymes, the study indicates content of trypsin and trypsinogen to be the most sensitive variable for detection of food limitation in the early stages of exogenous feeding.  相似文献   

10.
Three species of the marine wood-boring genus Limnoria were subjected to low dissolved oxygen concentrations at different temperatures under laboratory conditions. 28-day median tolerance limits (TLm) were 1.0 mg/l of dissolved oxygen at 15° to 16°C and 19° to 20°C for L. lignorum, 0.75 and 0.60 mg/l at 15° to 16°C and 22° to 25°C, respectively, for L. quadripunctata, and 1.0 and 1.18 mg/l at 15° to 16°C and 22° to 25°C, respectively, for L. tripunctata. The amount of burrowing activity, as measured by the egestion rate, was directly related to the amount of dissolved oxygen. A daily egestion rate of 0.116 mg per day in L. tripunctata at 22° to 25°C was the highest figure measured. The daily egestion rate was sharply reduced at dissolved oxygen concentrations below 3.0 mg/l.  相似文献   

11.
R. Villanueva 《Marine Biology》2000,137(1):161-168
 Apart from one study that reported growth of less than one increment per day in statoliths of the squid Alloteuthis subulata, most studies so far have presumed that one increment was laid down per day in the statoliths of the squid species they examined. The present study provides evidence of differential daily growth rates in embryonic statoliths of the squid Loligo vulgaris Lamarck, 1798, thus confirming a previous report for A. subulata. Incremental growth rates of L. vulgaris statoliths differ as a function of temperature. Squid embryos were incubated in the laboratory at three temperatures (12.0, 15.5 and 21.1 °C), and tetracycline staining was used to follow statolith growth. This growth slowed in squid exposed to the lowest temperature, but recovered when the squid were returned to warm conditions, indicating statolith adaptation. Statolith growth rate after incubation at 12 °C was 1.3% d−1 and reached 6.1% d−1 for squids exposed to 21.1 °C. Statoliths from embryos incubated at 15.5 °C yielded a rate of 1 increment d−1 and a mean daily growth of 2.2 μm in the dorsal dome area of the statolith. In contrast, the slow growth of statoliths incubated at 12 °C yielded a mean daily growth of only 0.9 μm in the dorsal dome and the readings resulted in a less-than-daily increment-deposition rate. Received: 9 October 1999 / Accepted: 30 March 2000  相似文献   

12.
Growth of Pandalus borealis post-larval stages was measured in relation to size and temperature. Growth characteristics, including intermolt period (IP), molt increment (MI) in size and mass, and tissue allocation in juvenile, male, and female shrimp, were evaluated at 2, 5, and 8°C, the temperature range where this species is generally found in the Northwest Atlantic. Significant variations in growth were associated with temperature and shrimp size. IP (days) increased significantly with shrimp size and was inversely related to temperature. Size (cephalothorax length in mm) and temperature effects were best described by IP = 10(0.67 log(CL) − 0.06 T − 1.34). The pronounced effect of temperature on IP while MIS changed little indicated that the main influence of temperature on growth rate of P. borealis was through IP. Specific growth rate (SGRS) decreased rapidly with size to near zero values in females. Overall, juveniles were much more sensitive to temperature variations than adults, suggesting that temperatures encountered during the juvenile stage will largely influence the growth trajectory of the population.  相似文献   

13.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

14.
Feeding by larvae of the sea bream Archosargus rhomboidalis (Linnaeus) was investigated from late September, 1972 to early May, 1973 using laboratory-reared larvae. Fertilized eggs were collected from plankton tows in Biscayne Bay, and the larvae were reared on zooplankton also collected in plankton nets. Techniques were developed to estimate feeding rate, food selection, gross growth efficiency, and daily ration. Daily estimates of these were obtained through 16 days after hatching at rearing temperatures of 23°, 26°, and 29°C. Feeding rate increased exponentially as the larvae grew, and increased as temperature was raised. At 23°C larvae began feeding on Day 3, at 26° and 29°C larvae began feeding on Day 2. Feeding rates at initiation of feeding and on Day 16 were, respectively: 23°C, 7.16 food organisms per larva per hour (flh) and 53.78 flh; 26°C, 7.90 flh and 168.80 flh; 29°C, 17.62 flh and 142.07 flh. Sea bream larvae selected food organisms by size. At initiation of feeding they selected organisms less than 100 m in width. As larvae grew they selected larger organisms and rejected smaller ones. The major food (more than85% of the organisms ingested) was copepod nauplii, copepodites, and copepod adults. Minor food items were barnacle nauplii, tintinnids, invertebrate eggs, and polychaete larvae. Mean values for gross growth efficiency of sea bream larvae ranged from 30.6% at 23°C to 23.9% at 29°C. Mean values for daily ration, expressed as a percentage of larval weight, ranged from 84% at 23°C to 151% at 29°C and tended to decline as the larvae grew.This paper is a contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA  相似文献   

15.
Nitrogen regeneration by the surf zone penaeid prawn Macropetasma africanus   总被引:1,自引:0,他引:1  
Nitrogen excretion of individual Macropetasma africanus (Balss) from an exposed beach/surf zone in Algoa Bay, South Africa was monitored under laboratory and field conditions in relation to body mass, temperature and feeding during 1985. Excretion rate experiments were performed on starved prawns at 15°, 18°, 20° and 25°C, as well as on individuals fed on four different diets (mussel, fish, shrimp and natural diet) at 15° and 20°C. The ratios of the excreted compounds to total nitrogen excreted were similar for the four diets despite differences in their nitrogen content and in the amount of food consumed. At 15° and 20°C, ammonia excretion rates of fed individuals were four to seven times higher than in starved prawns. the excretion rates were not correlated with nitrogen content of diets. M. africanus recycles 1 557 g NH4–N per metre strip per year or 1 832 g total nitrogen m-1 yr-1, which constitute 12 and 14%, respectively, of total phytoplankton requirements of the surf zone. This study indicates that large motile crustaceans, when abundant, can play an important role in nutrient recycling in turbulent marine environments.  相似文献   

16.
False feedings, when individuals visit the nest but refrain from feeding the chicks, occur in some cooperative species and have been interpreted in the white-winged chough (Corcorax melanorhamphos) as active deception by helpers towards the rest of the group. In a cooperatively breeding population of carrion crows (Corvus corone corone) 81.5% of the individuals that provided nestling care showed various kinds of false feedings: arriving at the nest with no food, consuming part or all the food brought to the nest, or taking back from a chicks gape the food that had just been delivered. False feedings occurred on average during 16.3% of nest visits, with some individuals performing them at very high rates (up to 64% of nest visits). False feedings occurred at similar rates in unassisted pairs and groups with helpers, and breeding females showed false feeding at significantly higher rates than other group members. Furthermore, individuals showed false feedings regardless of whether they were alone on the nest or in the presence of other group members, and false feedings did not provoke aggression by the rest of the group. False feedings are not likely to represent deceptive help in the carrion crow. We suggest that crows evaluate the chicks condition during nest visits and that false feedings occur as result of a trade-off between their own hunger and the chicks needs.Communicated by W.A. Searcy  相似文献   

17.
At Aldabra Atoll, the shrimp Ligur uvea inhabits a land-locked marine pool which is connected to the sea by a subterranean fissure. The shrimps migrate daily with the tide from a hole in the subterranean labyrinth to a feeding area at the bottom of the pool. The timing of the migration is tidal-linked and independent of light and temperature. With each incoming tide, tagged individuals return to a definite feeding ground. Such homing has not been reported from other L. uvea pools. Feeding activity was quantitatively measured, differences between day and night activity are interpreted as adaptations against predators (terrestrial wading birds). Compared to other L. uvea pools, the shrimps at Aldabra Atoll are exposed to a more rigorous environmental situation, which probably influences the tidal-linked behaviour of the local shrimp population.  相似文献   

18.
Temperature is known to have a strong influence on cephalopod growth during the early exponential growth phase. Most captive growth studies have used constant temperature regimes and assumed that populations are composed of identically sized individuals at hatching, overlooking the effects of seasonal temperature variation and individual hatchling size heterogeneity. This study investigated the relative roles of initial hatchling size and simulated natural seasonal temperature regimes on the growth of 64 captive Octopus pallidus over a 4-month period. Initial weights were recorded, and daily food consumption and fortnightly growth monitored. Two temperature treatments were applied replicating local seasonal water temperatures: spring/summer (14–18°C) and summer/autumn (18–14°C). Overall octopuses in the spring/summer treatment grew at a rate of 1.42% bwd−1 (% body weight per day) compared to 1.72% bwd−1 in the summer/autumn treatment. Initial size influenced growth rate in the summer/autumn treatment with smaller octopuses (<0.25 g) growing faster at 1.82% bwd−1 compared to larger octopuses at 1.68% bwd−1. This was opposite to individuals in the spring/summer treatment where smaller octopuses grew slower at 1.29% bwd−1 compared to larger octopuses at 1.60% bwd−1. Initial size influenced subsequent growth, however, this was dependent on feeding rate and appears to be secondary to the effects of temperature.  相似文献   

19.
S. M. Moss 《Marine Biology》1994,120(3):359-367
The use of nucleic acids to estimate crustacean growth is not well documented, and may be complicated by biochemical changes associated with their molt cycle. The objectives of this study were to assess the effects of molt stage on nucleic acid concentrations in abdominal muscle tissue of juvenile white shrimp,Penaeus vannamei, and to examine the relationship between nucleic acid concentrations and growth rates of shrimp exposed to different feeding regimes throughout a 12 d feeding experiment. RNA and DNA concentrations and RNA:DNA ratios were not significantly different among the five major molt stages early postmolt, late postmolt, intermolt, early premolt, and late premolt. In the feeding experiment, RNA concentrations and RNA:DNA ratios accounted for >70% of the variation in shrimp growth on three different sampling days. In addition, RNA concentrations and RNA:DNA ratios were used successfully to discriminate between unfed, moderately-fed, and well-fed shrimp. These variables exhibited significant treatment differences in <24 h after the initiation of the different feeding regimes, whereas significant changes in whole-body weight took longer to detect. Rapid detection of significant treatment effects can be useful in ecological studes, especially those concerned with food-web interactions.  相似文献   

20.
The energetics of feeding has been investigated in demersal fish with similar sedentary lifestyles from the Antarctic (Notothenia neglecta Nybelin), North Sea (Myoxocephalus scorpius L.) and Indian Ocean (Cirrhitichys bleekeri Bleeker). In general, the metabolic rates of fasting individuals were positively correlated with adaptation temperature: values for a standard 100 g fish (mg O2/h) were 3.3 for N. neglecta at around 0 °C, 2.7 for winter-acclimatized M. scorpius at 5 °C, 4.3 for summer-acclimatized M. scorpius at 15 °C, and 7.0 for C. bleekeri at 25 °C. In all species, following a single satiating meal, oxygen consumption increased to a peak of 2 to 3.5 times the fasting values. Maximum rates of oxygen consumption after feeding were several-fold higher in the warm-than in the cold-water species. After controlling for the effects of body mass and energy intake by analysis of covariance, the duration of the increase in metabolic rate, referred to as specific dynamic action (SDA), was found to be 3 to 4 times shorter in the warm- than in the cold-water fish, ranging from 57 h in C. bleekeri to 208 h in N. neglecta. In contrast, the SDA was not significantly different in the various species, corresponding to 15 to 23% of the energy ingested. Seasonal influences on metabolism and feeding were also studied in N. neglecta acclimated to simulated winter (-1.0 to-0.5 °C; 3 h light:21 h dark) or summer (0 to 0.9 °C; 21 h light:3 h dark) conditions. The metabolic rates of fasting and fed individuals, and the characteristics of the SDA were found to be independent of acclimation conditions. This suggests that N. neglecta is capable of processing food at similar rates throughout the year. Energy stores and enzyme activities were measured in the swimming muscles and liver of fish fed ad libitum. Summer-acclimated fish had higher concentrations of liver triglyceride stores and elevated activities of some enzymes of intermediary metabolism relative to winter-acclimated fish. The observed changes in intermdiary metabolism are probably related to annual cycles of growth and reproduction. It is suggested that the low aerobic scope for physiological performance in Antarctic fish may necessitate the seasonal switching of energy allocation between growth and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号