首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. Leaf cutting ants live in symbiosis with a basidiomycete fungus that is exploited as a source of nutrients for the ant larvae. Tests of fungus transport demonstrated that Acromyrmex subterraneus subterraneus workers discriminate concolonial fungus from alien fungus, and rejected the latter. Larvae and pupae of the ant were used as controls. Chemical analysis of the fungus revealed a great similarity between its hydrocarbon profile and that found on the ant brood. Experiments with lures showed that chemical extracts from the fungus are responsible for this discrimination process. Moreover, the presence of brood inside the fungus seemed to be important for discrimination of the fungus by workers. Resident workers accepted concolonial broodless fungus less than concolonial fungus inoculated with brood odor. Fungus seems to acquire colonial odor passively, simply by contact with the brood. The impact of fungus volume present in the nest on closure of the colony is discussed. We show here for the first time the importance of a symbiotic vegetal organism in colonial recognition in social insects. Received 14 April 2000; accepted 29 September 2000  相似文献   

2.
Cuticular hydrocarbon profiles are essential for nestmate recognition in insect societies, and quantitative variation in these recognition cues is both environmentally and genetically determined. Environmental cues are normally derived from food or nest material, but an exceptional situation may exist in the fungus-growing ants where the symbiotic fungus garden may be an independent source of recognition compounds. To investigate this hypothesis, we quantified the chemical profiles of the fungal symbionts of 18 sympatric colonies of Acromyrmex echinatior and Acromyrmex octospinosus and evaluated the quantitative variation of the 47 compounds in a multivariate analysis. Colony-specific chemical profiles of fungal symbionts were highly distinct and significantly different between the two ant species. We also estimated the relative genetic distances between the fungal symbionts using amplified fragment length polymorphism (AFLP) and correlated these with the overall (Mahalanobis) chemical distances between the colony-specific profiles. Despite the standardized laboratory conditions, the correlations were generally weak, but a statistically significant portion of the total variation in chemical profiles could be explained by genetic differences between the fungal symbionts. However, there was no significant effect of ant species in partial analyses because genetic differences between symbionts tend to coincide with being reared by different ant species. However, compound groups differed significantly with amides, aldehydes, and methyl esters contributing to the correlations, but acetates, alkanes, and formates being unrelated to genetic variation among symbionts. We show experimentally that workers that are previously exposed to and fed with the fungal symbiont of another colony are met with less aggression when they are later introduced into that colony. It appears, therefore, that fungus gardens are an independent and significant source of chemical compounds, potentially contributing a richer and more abundant blend of recognition cues to the colony “gestalt” than the innate chemical profile of the ants alone. Freddie-Jeanne Richard and Michael Poulsen contributed equally to this work.  相似文献   

3.
Fungus gardening ants make clear choices among fungal substrates (food for their fungus). It has been proposed, but never demonstrated, that these ants are collecting the best for their symbiotic fungus and the production of ant biomass (fitness). The goal of this study was to determine whether preferred substrates lead to higher fitness in the attine, Trachymyrmex septentrionalis. Preferences exhibited by foragers were established. Colonies were fed a single substrate or a mixture of substrates during the entire course of the experiment, which ended when sexual offspring appeared in the nest. The response variables were numbers and weights of ant offspring and the chitin content of fungus gardens. Preference was not strongly related to fitness. The preferred oak catkins produced the highest amounts of ant and fungal biomass, but the ants collected much more material than needed, which indicates that forager activity is decoupled from fitness. The preferred caterpillar feces were rejected shortly after the feedings began. The unpreferred oak leaves were just as effective at producing ant and fungal biomass as catkins. Leaves are possibly unpreferred because they are expensive to cut. The unpreferred huckleberry flowers were inferior but did not cause rejection behavior. The mixed diet was just as productive as catkins or leaves. This study indicates that foragers possess a default mechanism to prefer catkins and frass, which can be quickly changed if substrates are bad. In contrast, there does not appear to be a similar mechanism causing substrates to become preferred quickly.  相似文献   

4.
Summary. Polyphagous caterpillars of the giant geometer Biston robustum resemble the twigs of their respective food sources in color and shape. Common predatory ants, including Lasius and Formica, were often observed to freely prowl directly on caterpillars bodies, even after antennal contact. This suggests that the cuticular chemicals of the caterpillars resemble those of the twigs of the foodplants, so we analyzed both by GC and GC-MS. The chemical compositions differed among caterpillars fed on a cherry, Prunus yedoensis, a chinquapin Castanopsis cuspidata, and a camellia Camellia japonica. The cuticular chemicals of the caterpillars resembled those of their corresponding food sources. When the caterpillar diets were switched from the cherry to camellia or chinquapin at the 4th instars, the caterpillars cuticular chemicals changed after molting to resemble those of their respective foods. Caterpillars also changed their cuticular chemicals when they perched on cherry twigs and fed on camellia or chinquapin leaves, but not when they perched on camellia or chinquapin twigs and fed on cherry leaves. The chemical similarities between the caterpillars and the twigs were due to the digestion of host leaves, which indicates that this is a diet-induced adaptation.  相似文献   

5.
The little fire ant, Wasmannia auropunctata, constitutes one clonal supercolony throughout Israel, providing an opportunity to examine the effects of genotype versus environment on nestmate recognition. Intraspecific encounters among field-collected or among laboratory-maintained colonies were nonaggressive, but encounters between freshly collected and laboratory-maintained colonies were highly aggressive. Analyses of cuticular hydrocarbons revealed that freshly field-collected colonies had distinguishable profiles. Moreover, freshly collected colonies had profiles disparate from those of the same colonies after 4 months in the laboratory. These results indicate a strong interplay between genetic-based and environmentally based effects on the recognition cues. We propose that in the field the ants’ diet breadth is broad and consequently the incorporation of diet-borne substances is insufficient to mask the genetically determined cues. In the laboratory, however, the restricted diet promoted the incorporation of alien hydrocarbons at high levels, thus altering the genetically based cues to the point of alienation. These results shed a new light on the mechanisms by which environmental cues may affect label and/or template formation in ants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The ability to discriminate between more dangerous and less dangerous predators can have serious fitness advantages for fish juveniles. This is especially true for hatchery-reared fish young used for stocking, because their post-release mortality is often much higher than that of wild-born conspecifics. We tested whether two coexisting fish predators and their different diets induce innate behavioral responses in predator-naive Arctic charr (Salvelinus alpinus) young originating from an endangered hatchery-bred population used for re-introductions. We predicted the antipredator responses of charr to be stronger towards chemical cues of brown trout (Salmo trutta) and pikeperch (Stizostedion lucioperca) than towards odorless control water. More pronounced antipredator behavior was predicted in treatments with predators fed on charr than when their diet consisted of another sympatric salmonid, European grayling (Thymallus thymallus), or when they were food-deprived. The Arctic charr young showed strong antipredator responses in all brown trout treatments, whereas odors of the less likely predator pikeperch were avoided with conspecific diet only. Freezing was the most sensitive antipredator behavior, as it was completely absent in control treatments. We found considerable individual variation in the amount and strength of antipredator responses. Although almost half of the charr failed to show antipredator behavior towards the piscivores, those with the innate ability showed highly sensitive recognition of predator odors. Our results indicate that the innate antipredator behavior of the juvenile fish is already finely tuned to respond specifically to chemical cues from different fish predators and even their diets.Communicated by J. Krause  相似文献   

7.
Summary. Easy bleeding is a phenomenon discovered in some tenthredinid insects which possess a particularly low mechanical resistance of the integument, leading under mechanical stress to haemolymph exudation. It has a defensive effect against ants and wasps through harmful plant compounds which are sequestered in the haemolymph. Here we describe etho-ecological and some chemical aspects of the defence of easy bleeders and specify the range of predators to which easy bleeding might be effective. Beside a high haemolymph deterrence associated with low integument resistance across sawfly species, we also detected toxicity of the haemolymph of some species to workers of the ant Myrmica rubra. The behaviour of easy bleeders is to move slowly and, once disturbed, to become motionless, thereby probably impeding the tendency of a predator to attack. This behaviour had no beneficial effect for easy bleeders when attacked by the predatory bug Podisus maculiventris. Bugs could successfully and without harm prey on sawfly larvae without evoking easy bleeding. For the easy bleeder Athalia rosae, host plants with different secondary metabolite profiles, and, consequently, changes in haemolymph chemistry only slightly affected the feeding behaviour of the bugs. To test the effectiveness of easy bleeding towards a vertebrate predator, easy bleeders were offered to birds, Sturnus vulgaris. The body colouration of the sawfly larvae was of prime importance in determining the predators response when testing birds in a group. It is likely that easy bleeding is a defence strategy directed primarily towards foraging insects with biting-chewing mandibles and that it is much less active towards predatory insects with piercing-sucking mandibles as well as birds. The involvement of chemical and/or physical cues in the strategy is discussed with respect to these types of predators.  相似文献   

8.
In most social insects, worker sterility is reversible, and in the absence of the queen, at least some workers develop ovaries and lay male-destined eggs. In the honeybee, reproductive workers also produce queen-characteristic mandibular and Dufour’s pheromones. The evolution of worker sterility is still under debate as to whether it is caused by queen manipulation (queen-control hypothesis) or represents worker fitness maximization (worker-control hypothesis). In this study, we investigated whether worker fertility and royal pheromone production are reversible under the queen influence. To that effect, we induced ovary activation and queen pheromone production in workers by rearing them as queenless (QL) groups. These workers were subsequently reintroduced into queenright (QR) microcolonies for 1 week, and their ovary status and queen pheromone levels were monitored. Workers reintroduced into QR, but not QL colonies, showed a clear regression in ovary development and levels of the queen pheromones. This is the first demonstration that worker sterility and/or fertility is reversible and is influenced by the queen. These results also emphasize the robustness of the coupling between ovary activation and royal pheromone production, as well as lending credence to the queen-control hypothesis. The dynamics of queen pheromone production in QL workers supports the role of Dufour’s gland pheromone as a fertility signal and that of the mandibular gland pheromone in dominance hierarchies.The two authors, Osnat Malka and Shiri Shnieor, contributed equally to this work.  相似文献   

9.
Fathead minnows (Pimephales promelas) that have never encountered a predatory pike (Esox lucius), are able to detect conspecific alarm pheromone in a pike's diet if the pike has recently consumed minnows. It remains unclear how this minnow alarm pheromone is secreted by pike and if a pike is able to avoid being labelled as a potential predator by localizing these cues away from its foraging range. The first experiment determined that minnow alarm pheromone is present in pike feces when pike are fed minnows. Individual fathead minnows exhibited a fright response to a stimulus of pike feces if the pike had been fed minnows, but not if the pike had been fed swordtails, which lack alarm pheromone. Individual minnows also exhibited a fright reaction to alarm pheromone in the water (which contained no feces) housing pike which had been fed minnows, suggesting that alarm pheromone is also released in urine, mucous secretions and/or via respiration. The second experiment determined that test pike spent a significantly greater proportion of time in the home area of the test tanks (i.e. where they were fed) but the majority of feces were deposited in the opposite end of the test tank. By localizing their defecation away from the home or foraging area, pike may be able to counter the effects of being labelled as a predator by the alarm pheromone of the prey species.  相似文献   

10.
Allometry and the geometry of leaf-cutting in Atta cephalotes   总被引:2,自引:0,他引:2  
Summary This study considers the relationship of both leg length and the geometry of leaf-cutting to load-size determination by the highly polymorphic leaf-cutting ant Atta cephalotes. A. cephalotes workers anchor on the leaf edge by their hind legs and pivot around them while cutting arcs from leaves. I tested the hypothesis that, for an ant cutting a semicircular leaf fragment, fragment area is determined by a fixed reach while cutting. This reach hypothesis predicts that ants should cut the same fragment-area for at all leaf types. Also, if the radius of the semicircular fragment is proportional to hind leg length, this hypothesis predicts that leaf area should be proportional to hind-leg length squared. The field work was carried out in March–April 1990 and June 1991 in Heredia Province, Costa Rica. I measured hind-leg length for workers of different masses. I then measured leaf-fragment area and mass for workers cutting semicircular fragments from leaves of different densities (mass/area). The logarithmic relationship between ant mass (M a) and hind-leg length L accelerated negatively (Fig. 1). As a result of this complex allometry, relative leg length (L/M a 0.33) increased with ant mass up to a mass of 7.4 mg. Above 7.4 mg, relative leg length decreased. For foragers cutting semicircular fragments, the area cut by an ant of a given size showed no significant difference among leaves of different densities (Fig. 2). Leaf area (A) increased as a function of leg length to the 1.9 power (Fig. 4), an exponent not significantly different from the square function expected if the radius of a fragment is determined by the ant's reach. As a result of this consistent mode of fragment-area determination, the mass of fragments cut by an ant of a given size was significantly greater when cutting denser leaves (Fig. 3) and relative area (A/M a) cut decreased with increasing ant mass. However, because larger ants generally cut denser leaves (Table 1), the increased density of thick leaves was offset by the reduced relative area cut by the larger ants. Overall, 93% of the foragers cut fragments weighing between 1.5 and 6 times their own body mass (Table 1). Earlier studies found that this broad load-mass range maximized the biomass-transport rate (mass/distance/time) and transport efficiency (mass/distance/energy cost). Thus, A. cephalotes does not solve the problem of matching ant mass and load mass at leaves of different densities with flexibility in the leaf-cutting behavior of individual ants. Instead, individual ants employ a single simple behavioral rule, but workers of different sizes and body proportions tend to cut leaves of different densities.  相似文献   

11.
Summary A combination of behavioral and chemical analyses was used to investigate the nature of nestmate recognition cues and the effects of worker age and social experience on these cues in the ant Camponotus floridanus. Five categories of workers were tested: foragers, 5-day old and 0-day old callows, 5-day old and 0-day old naive callows. Bioassays consisted of introductions of dead workers from these categories into their own colonies or into an alien colony after the following treatments: 1) killed by freezing, 2) solvent-washed, 3) solvent-washed and coated with a nestmate soak, 4) solvent-washed and coated with a non-nestmate soak. Soaks were obtained from individual ants immersed in hexane and were applied individually to washed workers from the same category. Soaks were analyzed by gas chromatography (GC) and compared by multivariate analyses. Freeze-killed workers from each category elicited more aggressive behavior in the alien colony than in its own. By comparing GC profiles, a worker from any category can be assigned to its colony of origin. Thus all studied worker categories are colony-specific. Solvent-washed ants did not induce more aggressive behaviors in the alien colony than in their own, but they induced significantly less aggressivity in an alien colony than non-treated dead ants from the same category. Washed ants indced more aggressive behaviors when coated with a soak from a different colony as opposed to a soak from the colony in which they were introduced. The combination of behavioral and chemical results lead to the following conclusions: 1) Information contained in soak derived from workers was sufficient to allow nestmate recognition. 2) Nestmate recognition cues, and consequently the recognition response displayed to their bearer, change with age. 3) Social experience is necessary to develop or acquire a colony-specific label. The role of age and social experience on nestmate recognition in social Hymenoptera is discussed.  相似文献   

12.
Informational constraints can be an important limitation on the accuracy of recognition. One potential constraint is the use of recognition information from the same sources in multiple discriminatory contexts. Worker wood ants, Formica fusca, discriminate eggs based on their maternal sources of origin in two main contexts: recognition of eggs laid by nestmate versus non-nestmate queens and recognition of worker-laid versus queen-laid eggs. We manipulated the experience of F. fusca workers in laboratory colonies to both worker-laid and queen-laid eggs by transferring eggs between colonies in order to investigate whether these two contexts of egg discrimination are independent. Experience of non-nestmate queen-laid eggs significantly increased worker acceptance of both familiar (18% accepted) and unfamiliar (10%) queen-laid eggs compared to control workers without experience of eggs other than those laid by their own colony’s queen (2%). In contrast, worker acceptance of worker-laid eggs was not affected by variation in the egg experience of workers (14% in workers from control colonies exposed only to eggs from their own colony’s queen versus 19% and 17% in workers from colonies which had received eggs laid by either a non-nestmate queen or nestmate workers, respectively). Our results suggest that these two recognition contexts do not strongly constrain each other and are different in their ontogeny. In particular, worker-laid eggs are universally discriminated against by workers from colonies with a queen whatever the egg experience of the workers, while non-nestmate queen-laid eggs are strongly discriminated against only by workers without experience of eggs laid by more than one queen.  相似文献   

13.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

14.
Ant colonies are factories within fortresses (Oster and Wilson 1978). They run on resources foraged from an outside world fraught with danger. On what basis do individual ants decide to leave the safety of the nest? We investigated the relative roles of social information (returning nestmates), individual experience and physiology (lipid stores/corpulence) in predicting which ants leave the nest and when. We monitored Temnothorax albipennis workers individually using passive radio-frequency identification technology, a novel procedure as applied to ants. This method allowed the matching of individual corpulence measurements to activity patterns of large numbers of individuals over several days. Social information and physiology are both good predictors of when an ant leaves the nest. Positive feedback from social information causes bouts of activity at the colony level. When certain social information is removed from the system by preventing ants returning, physiology best predicts which ants leave the nest and when. Individual experience is strongly related to physiology. A small number of lean individuals are responsible for most external trips. An individual’s nutrient status could be a useful cue in division of labour, especially when public information from other ants is unavailable.  相似文献   

15.
1.  Colonies of Pheidole dentata employ a complex strategy of colony defense against invading fire ants. Their responses can be conveniently divided into the following three phases: (1) at low stimulation, the minor workers recruit nestmates over considerable distances, after which the recruited major workers (soldiers) take over the main role of destroying the intruders; (2) when the fire ants invade in larger numbers, fewer trails are laid, and the Pheidole fight closer to the nest along a shorter perimeter; (3) when the invasion becomes still more intense, the Pheidole abscond with their brood and scatter outward in all directions (Figs. 1, 4).
2.  Recruitment is achieved by a trail pheromone emitted from the poison gland of the sting. Majors can distinguish trail-laying minors that have just contacted fire ants, apparently by transfer of the body odor, and they respond by following the trails with more looping, aggressive runs than is the case in recruitment to sugar water. Majors are superior in fighting to the minors and remain on the battleground longer.
3.  The first phase of defense, involving alarm-recruitment, is evoked most strongly by fire ants and other members of the genus Solenopsis; the presence of a single fire ant worker is often sufficient to produce a massive, prolonged response (Figs. 2, 5, 6). In tests with Solenopsis geminata, it was found that the Pheidole react both to the odor of the body surface and to the venom, provided either of these chemical cues are combined with movement. Fire ants, especially S. geminata, are among the major natural enemies of the Pheidole, and it is of advantage for the Pheidole colonies to strike hard and decisively when the first fire ant scouts are detected. Other ants of a wide array of species tested were mostly neutral or required a large number of workers to induce the response. The alarm-recruitment response is not used when foragers are disturbed by human hands or inanimate objects. When such intrusion results in a direct mechanical disturbance of the nest, simulating the attack of a vertebrate, both minor and major workers swarm out and attack without intervening recruitment.
  相似文献   

16.
Summary The phenotypic cues that provide for rejection of non-nestmates by workers of the ant genus Camponotus could derive from any or all of four sources: (1) environmental odors; (2) the individual's own genetically-determined recognition pheromones or discriminators; (3) a gestalt or mixture of transferable discriminators, produced by each nestmate and absorbed by all; and/or (4) the discriminators of the queen applied to all nestmates. To test these hypotheses, four series of small experimental colonies were created: inter- and intraspecific mixed colonies containing queens, queenless worker groups, and pairs of worker groups between which a single queen was repeatedly switched. Intraspecific mixed colonies and queenless groups were further divided into groups receiving different diets. Aggression of workers in 165 experimental colonies was assayed in a total of 4064 neutral arena tests. Workers adopted into inter- and intraspecific mixed colonies with queens were highly aggressive to unfamiliar kin from pure colonies, independent of diet and of the proportion of different kin groups in the colony. However, queenless workers exhibited less aggression to unfamiliar kin than to non-kin, demonstrating the existence of worker discriminators. Diet differences slightly enhanced aggression among unfamiliar queenless kin. Non-kin sharing a switched queen were as unaggressive to one another as were sisters. The ability to adopt queenless workers between colonies gradually declined over 1–2 wks following their emergence from pupae. We propose a hierarchy of importance of cue sources in determining nestmate discrimination in small Camponotus colonies: Queen discriminators> worker discriminators>environmental cues. A flow-diagram model of social insect kin recognition, based on the phenotype matching concept of Holmes and Sherman (1983), is discussed.  相似文献   

17.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

18.
In this paper, we used the food-correlated search behavior observed in foraging ants returning to a previously rewarding site to study information transfer during recruitment in the ant Lasius niger. We hypothesized that, if information about the characteristics of the food is conveyed during recruitment, food-correlated search tactics should also be observed in recruited workers. Our results show that the characteristics of the trajectories of recruited workers are comparable to those of scout ants returning to a site or prior food find and depend more on the type (prey/sugar) than on the quality (sugar concentration) of the food discovered by the scouts. Independent of sugar concentration, workers recruited to a source of sugar search with a greater sinuosity than workers recruited to a prey. Experimental manipulation of the recruitment signals (chemical trail and contact between ants) shows that the trail pheromone laid down by recruiting ants does not play a role in the modification of trajectory sinuosity. This change appears to be most likely triggered by a direct perception of the residue of sugar smeared on the body of the recruiting workers coming back to the nest.Communicated by J. Heinze  相似文献   

19.
Summary. In amphibians and fishes, evidence is increasing that chemical cues from injured conspecifics can play a role in the chemical labelling and learned recognition of unfamiliar predators. In this laboratory study, we tested the prediction that prior chemical exposure to a non-native predator feeding on conspecific tadpoles will subsequently allow tadpoles of the common toad (Bufo bufo) to recognize the chemical cues specifically released by this starved predator. Furthermore, we investigated the vulnerability of this chemically-mediated process to herbicide contamination. With these aims in view, groups of tadpoles were kept either unexposed or exposed for ten days to chemical cues from Turkish crayfish (Astacus leptodactylus) previously fed on tadpoles, both in uncontaminated water and in the presence of four sublethal concentrations of amitrole (0.01, 0.1, 1 and 10 mg.l−1). We then assessed the effects of the six conditioning treatments on general activity and behavioural response to chemical cues from starved crayfish. Larval treatments did not affect the general activity of the tadpoles. By contrast, the treatments had significant effects on the behavioural response to the test solution prepared form starved crayfish. The only tadpoles to show an antipredator behavioural response to the chemical stimulation from starved crayfish belonged to the groups derived from chemical exposure to tadpole-fed crayfish in uncontaminated water and in contaminated water with the lowest concentration of amitrole (0.01 mg.l−1). Conversely, this chemical stimulation produced no behavioural change in the control group or in the groups derived from exposure to tadpole-fed crayfish in contaminated water containing 0.1, 1 and 10 mg.l−1 of amitrole. This study demonstrates that chemical cues released during the predator’s feeding activity can subsequently be used by common toad tadpoles in the recognition of an unfamiliar predator. In addition, our results show that the presence of sublethal amitrole concentrations can impair this recognition process. Such a pesticide effect might be especially detrimental for amphibian populations threatened by invasive predators.  相似文献   

20.
Summary. Because generalist ants are aggressive towards foreign insects, the recognition of homopterans by tending ants is critical in ant/homopteran trophobiosis. Herein we report experimental evidence indicating that Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae) learn to associate the production of honeydew with the chemical characteristics of homopteran cuticle, suppressing ant aggression and allowing the ants to tend homopterans. Although chemically-mediated associative learning is well understood in honeybee foraging, to our knowledge, it has not been reported before in ant/homopteran trophobiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号