首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plankton samples were taken from January to June 1987 in Kaneohe Bay, Oahu, Hawaiian Islands, with a free-fall plankton net, to investigate the fine-scale distribution of larval fishes around coral reefs. Daytime samples indicated that the postflexion larvae of two gobiids (Psilogobius mainlandi and an unidentified species) were significantly more abundant at stations immediately adjacent to reefs (near-reef) than at stations in open water off the reef (off-reef). These postflexion gobiid larvae appeared to be capable of resisting advection and dispersal while remaining in the water column near suitable adult habitats. The larvae of Foa brachygramma (Apogonidae) and Encrasicholina purpurea (Engraulidae) were significantly more abundant at off-reef stations than at near-reef stations. Nighttime samples indicated that the gobiid larvae depend on visual cues to remain near the reef. The horizontal distributions of F. brachygramma and E. purpurea larvae appeared to be related to their vertical positioning. These data suggest that typical ichthyoplankton surveys which do not sample close to adult fish habitats would greatly underestimate the abundances of larvae such as the gobiids.  相似文献   

2.
The quantitative importance of light-mediated, dissolved organic nitrogen (DON) utilization in relation to overall nitrogen-assimilation in Aureococcusanophagefferens Hargraves et Sieburth was assessed during a brown tide event in Shinnecock Bay, Long Island, 24 through 26 July 1995. The growth response of A. anophagefferens was maximal in organic-rich Bay water and decreased proportional to the organic:inorganic nutrient ratio of the water. Short-term uptake measurements with six nitrogenous substrates revealed that reduced nitrogen could potentially represent 95% of overall nitrogen uptake of which 70% was due to organic nitrogen alone. Potential uptake of urea by the A. anophagefferens-dominated bloom was substan tially greater than uptake of the other substrates tested during the study, contributing the largest percentage of total nitrogen uptake (58 to 64%; ρ max(urea) 4.4 μg  atom N l−1 h−1), followed by NH4 + (18 to 26%; ρ′max(NH4+) 2 μg atom N l−1 h−1). The combined rates of uptake of algal extract, lysine and glutamic acid contributed between 11 and 16% of total uptake, whereas NO3 contributed 5 to 8%. Based on the kinetic determinations from this study we suggest an ecological framework for the events leading to the dominance and abundance of A. anophagefferens in coastal bays. Received: 29 March 1997 / Accepted: 24 April 1997  相似文献   

3.
The sea urchin Lytechinus variegatus is capable of surviving chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg l−1, and triethyl phosphate (organic phosphate) concentrations of 1,000 mg l−1. However, chronic exposure to low (0.8 mg l−1 inorganic and 10 mg l−1 organic phosphate), medium (1.6 mg l−1 inorganic and 100 mg l−1 organic phosphate) or high (3.2 mg l−1 inorganic and 1,000 mg l−1 organic phosphate) sublethal concentrations of these phosphates inhibits feeding, fecal production, nutrient absorption and allocation, growth and righting behavior. Food consumption and fecal production declined significantly in individuals exposed to medium and high concentrations of inorganic phosphates and all levels of organic phosphates. Feeding absorption efficiencies for total organics and carbohydrates decreased significantly in individuals held in the highest concentration of organic phosphate. Feeding absorption efficiencies for lipids were significantly reduced in the highest inorganic phosphate concentration only, while they decreased significantly for protein with increasing phosphate exposure. Carbohydrate and lipid levels in gonad and gut tissues decreased significantly with exposure to increasing phosphate concentrations, potentially impairing both gametogenesis and nutrient storage in the gut. Moreover, gonad indices significantly decreased in individuals exposed to the highest concentrations of either phosphate. Growth rates decreased significantly under the influence of all phosphate concentrations, while increasing in seawater alone. Individuals exposed to increasing phosphate concentrations showed reduced righting responses (a measure of stress) and no acclimation in righting times during chronic exposure to phosphates over a 4 week period. These findings indicate that shallow-water populations of L. variegatus subjected to inorganic and organic phosphate pollutants will exhibit stress and be inhibited in their growth and performance due to reductions in feeding, nutrient absorption and allocation of nutrients to key somatic and reproductive tissues. Received: 10 April 2000 / Accepted: 2 October 2000  相似文献   

4.
Algal turfs are the major primary producing component on many coral reefs and this production supports higher levels in the complex reef trophic web. Rates of metabolism of algal turfs are related positively to water motion, consistent with limitation by the diffusion of a substance through a boundary layer. Based on engineering mass transfer theory, we hypothesized that photosynthesis of algal turfs is controlled by rates of mass transfer and responses of photosynthesis to increasing flow speed should be predicted by engineering correlations. This hypothesis was tested in ten experiments where photosynthesis was estimated in a flume/respirometer from changes in dissolved oxygen at eight flow speeds between 0.08 and 0.52 m/s. Flow in the flume and over the reef at Kaneohe Bay, Oahu, Hawaii was estimated using hot-film thermistor and electromagnetic current meters. Rates of photosynthesis were related positively to flow in all experiments and plots of the log of the average Sherwood number (Sh meas) versus log Reynolds number (Re D) for each experiment are lower than predicted for mass transfer through a turbulent boundary layer. Algal turf-covered plates are characterized as hydrodynamically transitional to fully rough surfaces and the lower than predicted slopes suggest that roughness reduces rates of mass transfer. A negative correlation between algal turf biomass and slopes of the log Sh meas−log Re D plots suggests that mass transfer to algal turfs is affected significantly by the physical structure of the algal community. Patterns of photosynthesis based on changes in dissolved oxygen and dissolved inorganic carbon concentrations (DIC) indicate that the flow speed effect is not the result of increased flux of oxygen from the algal turfs, and combined with the short response time to flow speed, suggest that DIC may limit rates of photosynthesis. Although there are differences between flow in the flume and flow over algal turfs on the reef, these results suggest that photosynthesis is controlled, at least in part, by mass transfer. The chemical engineering approach provides a framework to pose further testable hypotheses about how algal canopy height, flow oscillation, turbulence, and substratum roughness may modulate rates of metabolism of coral reef algal turfs.  相似文献   

5.
Grazing effects on nitrogen fixation in coral reef algal turfs   总被引:2,自引:0,他引:2  
This study addressed whether grazing by the sea urchin Diadema antillarum influenced rates of nitrogen fixation by algal turf communities on Caribbean coral reefs. Because the turfs were nitrogen-limited, we also assessed whether newly-fixed nitrogen was important for supporting net primary productivity by the turfs. We measured acetylene reduction in turfs grown in treatments excluding or including D. antillarum in the presence of other herbivores at 3 m water depth on Tague Bay forereef, St. Croix, U.S. Virgin Islands. These were the first measurements of acetylene reduction on coral reefs under quasi-natural conditions of high water-flow and photosynthetic oxygen generation. Rates of acetylene reduction under these conditions were as high as any measured previously in coral reef communities (mean 7.6 nmol C2H4 cm−2 h−1). Algal turfs grazed by D. antillarum and other herbivores had chlorophyll-specific acetylene reduction rates up to three times higher than when D. antillarum was excluded. High rates of nitrogen fixation by the turfs were sufficient to meet <2% of the nitrogen required to support net chlorophyll-specific primary productivity over 24 h. Grazer-mediated increases in nitrogen fixation do not appear responsible for a parallel enhancement of net primary productivity. Algal turfs at this site must be dependent primarily on external sources of nitrogen. Received: 1 July 1997 / Accepted: 5 September 1997  相似文献   

6.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

7.
The storage of nitrate by phytoplankton cells during the early phases of upwelling was studied in coastal stations off northern Spain (southern Bay of Biscay) between 1990 and 1994. In this region, a persistent upwelling during summer is characterised by intermittent pulses of variable intensity, and increased nutrient concentrations in the surface layer. The main effect of an upwelling pulse on phytoplankton distribution is the shifting of the chlorophyll a and primary production maxima to near the surface. When the upwelling relaxes, thermal stratification of the water column occurs, and a distinct subsurface chlorophyll maximum develops below the production maximum. An accumulation of intracellular nitrate characterized the early phases of upwelling (mean = 2.73 μmol N m−3), maximum concentrations being attained at depths where biomass and production values were moderate. In contrast, phytoplankton cells from non-upwelling situations contained significantly lower concentrations of intracellular nitrate (mean = 0.17 μmol N m−3). The variations in the intracellular pool of nitrate may result from the differential allocation of resources within the cell as a result of variations in the energy available, since the uptake and assimilation of nitrate is a relatively expensive process involving several enzymatic systems. We hypothesize that nitrate storage by phytoplankton cells is characteristic of early phases of upwelling and is linked to patterns of carbon fixation. Average nitrogen budgets for upwelling and non-upwelling situations indicate that intracellular nitrate reserves are not responsible for maintaining high phytoplankton growth rates, since they only account for <2% of daily primary production during upwelling events. Received: 28 August 1996 / Accepted 3 December 1996  相似文献   

8.
The short-term movements and behaviour of whale sharks (Rhincodon typus Smith, 1828) during March 1994 and April 1997 are reported from data collected by acoustic tracking and archival tags at Ningaloo Reef on the north west coast of Western Australia. Sharks were tracked for up to 26 h and generally swam slowly at ≃0.7 m s−1 parallel to the reef edge; occasionally they swam in a wide arc adjacent to passes in the reef. All tracked sharks made regular dives through the water column, mostly from the surface to near the bottom. These dives did not appear to be related to hydrographic features, and the sharks were probably searching the water column for food. Most sharks were accompanied by other fishes, usually the golden trevally Gnathanodon speciosus. Received: 19 January 1999 / Accepted: 22 June 1999  相似文献   

9.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

10.
The red alga Portieria hornemannii (Lyngbye) Silva was selected to test the effects of enhanced nutrient availability on the production of carbon-based secondary metabolites, because of its notable site-to-site variation in monoterpene production. On Guam, the major secondary metabolite produced by this alga is ochtodene, a cyclic monoterpene. Quantitative high-performance liquid-chromatography analysis of the extracts of P. hornemannii collected from six sites on Guam showed that both ochtodene and triglyceride concentrations differed significantly among sites. Internal nitrogen and phosphorus content of the algae did not correlate with the observed variation in chemistry. Experimental enhancement of N-alone, P-alone or N + P in the field for 5 wk failed to induce a significant change in ochtodene concentrations in the alga, while triglyceride concentrations increased significantly in the N + P treatment. Ochtodene and triglyceride concentrations did not change among similar treatments in shaded (18 d) and unshaded (11 d) fertilization experiments conducted in the laboratory. Variation in ochtodene concentrations in P. hornemannii cannot be attributed to N and P availability; however, the decrease in ochtodene and triglyceride concentrations during the shaded laboratory experiment suggests that light may be a factor influencing monoterpene biosynthesis. The difference in ochtodene concentration between the initial and final sets of field controls collected for the unshaded laboratory experiment suggests that temporal variation might also contribute to differences observed among the algae at the different sites. Received 11 June 1996 / Accepted 20 July 1996  相似文献   

11.
Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.  相似文献   

12.
European lobsters, Homarus gammarus (L.), were tracked on an artificial reef in Poole Bay on the south coast of England using an electromagnetic telemetry system which monitored movements between reef units and recorded body movements (pitching and rolling) detected with a tilt switch incorporated into the transmitting tag. Several environmental variables (water temperature, light, hydrostatic pressure, current velocity and direction) were recorded simultaneously by the telemetry system, which was self-contained on the seabed. Movements between units of the artificial reef (excursions outside shelter) were predominantly nocturnal, peaking 1.5 to 3 h after sunset and returning to low levels shortly before dawn. A marked decline in the number of inter-reef unit movements from late summer to winter was related to decreasing water temperature rather than to daytime light level, wave height or tidal range. Activity indicated by the tilt switch was also greater at night, but declined gradually from a peak early in the night to a minimum at around midday, on average, implying a degree of activity within reef units during daylight. As with movements between reef units, activity declined seasonally with decreasing water temperature; in addition, the diel pattern of activity disappeared in winter. Received: 9 February 1998 / Accepted: 24 July 1998  相似文献   

13.
Of the two resting life-forms of the planktonic diatom Chaetoceros pseudocurvisetus Mangin formed during periods of nitrate depletion, resting spores survived at least 1 month after spore formation at 24 °C, while resting cells survived only for about 10 d at the same temperature. Under nitrogen limitation, resting cells exhibited higher specific death rates than resting spores at temperatures ranging from 5 to 30 °C. After nitrogen replenishment, resting spores required a certain lag period of about 1 d to initiate vegetative growth at levels of nitrate supply from 0.5 to 20 M, while resting cells initiated vegetative growth almost immediately. Resting spores exhibited an intracellular accumulation of the supplied nitrate during germination and initial vegetative growth. The resting cells, however, exhibited more active vegetative growth, closely coupled with the uptake of the supplied nitrate. The resting spores and resting cells appear to play different roles in the maintenance of populations under nutrient fluctuations depending on the interval length between nutrient fluxes in natural waters. Received: 27 April 1998 / Accepted: 1 March 1999  相似文献   

14.
N. Choe  D. Deibel 《Marine Biology》2000,137(5-6):847-856
The vertical distribution and population dynamics of the chaetognath Parasagitta elegans Verrill were determined in the water column and hyperbenthic zone of Conception Bay, Newfoundland from April 1997 to June 1998. The water column depth at the study site (47°32.2′N; 53°07.9′W) was 235 m. The temperature below the thermocline was <0 °C the year round. Chaetognath samples from the water column were collected with a Tucker Trawl. Those from the hyperbenthic zone, were collected with an epibenthic sledge. Depending upon whether the hyperbenthic zone was assumed to extend either 1 m or 10 m above bottom, the grand mean, areal abundance of chaetognaths in the hyperbenthic zone ranged from 6% to 40% of the total abundance in the water column (including the hyperbenthic zone), and the grand mean, areal biomass ranged from 25% to 77%. Large, mature individuals were collected only in the hyperbenthic zone, whereas small, immature individuals were collected primarily in the water column. According to body length and ovary maturity data, three cohorts were identified in the hyperbenthic zone during the study period. Within each cohort, the length frequency of reproductively mature individuals was bimodal, with groups of mean length 33 mm and 41 mm reproducing from May to October. The recruitment period of juvenile chaetognaths extended from July to February, coinciding with the recruitment period of copepods. The estimated individual growth rate of P. elegans was 1.0 mg C year−1. The approximate generation time of the two groups of individuals with mean length at maturity of 33 mm and 41 mm was 450 and 780 days, respectively. This study demonstrates that a failure to sample the large, mature P. elegans living in the hyperbenthic zone leads to serious underestimates of the total abundance and biomass of chaetognaths and an inaccurate picture of seasonal population dynamics. Received: 8 September 1999 / Accepted: 15 September 2000  相似文献   

15.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

16.
A technique for measuring rates of RNA and DNA synthesis in sedimentary microbial communities has been adapted from methods developed for marine and freshwater microplankton research. The procedure measures the uptake, incorporation and turnover of exogenous [2, 3H]-adenine by benthic microbial populations. With minor modification, it is applicable to a wide range of sediment types. Measurement of nucleic acid synthesis rates are reported from selected benthic marine environments, including coral reef sediments (Kaneohe Bay, Oahu, Hawaii), intertidal beach sands (Oahu and southern California) and California borderland basin sediment (San Pedro Basin), and comparisons are made to selected water-column microbial communities. Biomass-specific rates of nucleic acid synthesis in sediment microbial communities were comparable to those observed in water-column assemblages (i.e., 0.02 to 2.0 pmol deoxyadenine incorporated into DNA [ng ATP]-1 h-1 and 0.2 to 8.9 pmol adenine incorporated into RNA [ng ATP]-1 h-1). DNA synthesis rates were used to calculate carbon production estimates ranging from 2 g C cm-3 h-1 in San Pedro Basin sediment (880 m water depth) to 807 g C cm-3 h-1 in coral reef sediment from the Kaneohe Bay. Microbial community specific growth rate, (d-1), estimated from DNA synthesis rates in surface sediments ranged from 0.1 in San Pedro Basin to 4.2 in Scripps Beach (La Jolla, California) intertidal sand.  相似文献   

17.
Pieces of the reef coral Montipora verrucosa (Lam.), collected from Kaneohe Bay, Oahu, Hawaii in 1982, were grown in four low-light treatments (11% sunlight): blue, green, red and the full spectrum of photosynthetically active radiation (PAR); and at high-intensity full PAR (90% sunlight). These acclimated corals were then tested for photosynthetic ability in blue, green, red, and white light. The photosynthetic parameters that were measured were; ligh-saturated photosynthetic rate, the initial slope of the photosynthesis/irradiance curve, the light intensity where these two lines crossed, and dark respiration. While acclimation intensity had a pronounced effect, the results also showed that the color of the acclimation treatment influenced the photosynthetic responses of the corals. The color of the light used in the measurements of photosynthesis had much less effect on the photosynthetic responses of the corals.Contribution No. 729 of the Hawaii Institute of Marine Biology  相似文献   

18.
The pattern of settlement over time of three broadcast spawning coral species (Cyphastrea serailia, Acanthastrea lordhowensis, and Goniastrea australensis) from the Solitary Islands (30°00′S; 153°20′E) was studied in 1995 and 1996 in order to determine the maximum length of time these larvae could remain in the water column and still retain the ability to settle and metamorphose. Larvae were maintained in aquaria and the number which had settled on biologically-conditioned tile pairs was monitored every 5 to 10 d. While the majority of larvae settled quickly after becoming competent, some larvae survived and settled for extended periods after spawning. Competency periods ranged from 26 d for C. serailia to 56 d for G. australensis and 78 d for A. lordhowensis. These data greatly extend the known competency periods for larvae of broadcast-spawning corals and indicate the potential for transport of broadcast-spawned coral larvae over large distances. Medium to long-distance larval dispersal of the species studied provides a mechanism for their widespread distribution in subtropical regions, on reefs which are often widely spaced and relatively isolated. Received: 27 May 1997 / Accepted: 27 November 1997  相似文献   

19.
洞庭湖浮游植物增长的限制性营养元素研究   总被引:1,自引:0,他引:1  
近20年水质监测资料表明,洞庭湖水体富营养化日趋严重。洞庭湖水体主要污染物为氮和磷,而营养盐赋存形态及其含量对浮游植物生长的影响在洞庭湖尚未见报道。2011年9月至2012年8月对洞庭湖浮游植物生物量及主要营养盐赋存形态与含量进行监测,同时利用藻类增长的生物学(NEB)评价方法对限制浮游植物增长的营养盐进行了研究,并分析了浮游植物生物量与各营养元素之间的相关性。结果表明:洞庭湖主要污染物总氮(TN)和总磷(TP)的年平均值分别为1.90 mg·L-1和0.093 mg·L-1,溶解态无机氮(DIN)平均占ρ(TN)比例为87%,溶解态总磷(DTP)平均占ρ(TP)比例为70%。洞庭湖水体中,DIN是TN的主要贡献者,且不同形态DIN的贡献大小依次为ρ(NO3--N)〉ρ(NH4+-N)〉ρ(NO2--N);磷形态组成中,TP主要以溶解反应性磷(SRP)存在。春季洞庭湖水体中ρ(TN)、ρ(TP)较高,这一结果可能源于春季面源污染。洞庭湖水体中ρ(Chla)与氮显著正相关,与磷显著负相关。NEB 实验结果表明氮对洞庭湖浮游植物生长有明显的促进作用,其幅度随氮浓度的增加而加强,而磷对浮游植物的生长影响不大,有时出现抑制作用,硝态氮与磷之间不存在交互作用。因此,氮可能是洞庭湖浮游植物增长的主要限制性营养因子,这一研究暗示在洞庭湖富营养化控制过程中应特别注重氮的控制。  相似文献   

20.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号