首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three populations of Oreaster reticulatus (Linnaeus, 1758) inhabiting shallow-water (<4 m) seagrass habitats in the Grenadines (West Indies, Caribbean Sea) were associated predominantly with beds of Halodule wrightii. Occupation of fringing inshore areas of bare sand was inversely related to wave action; even where sandy patches occurred offshore, the preferred substratum was H. wrightii. The association of O. reticulatus with H. wrightii is related to the asteroid's microphagous feeding habit and the availability of food resources associated with the seagrass. O. reticulatus rarely occurred on dense beds of Thalassia testudinum, but was moderately abundant in areas of sparse cover. Differences in the occurrence of O. reticulatus among seagrass types may be related to factors afdecting foraging effort, such as the tractability of the substratum and mobility upon it. Populations of O. reticulatus exhibited an aggregated dispersion within beds of H. wrightii, possibly attributable to local substratum heterogeneity and/or reproductive behavior. Increased turbulence induced migration to deeper water and markedly increased aggregation along offshore boundaries. The populations were primarily adults, with some late juvenile stages. The paucity of juveniles and their cryptic behavior and coloration suggest that settlement and early postmetamorphic development occurs in alternate habitats, such as dense beds of T. testudinum. Interpopulation differences in size structure may be associated with differences in the quality and availability of food sources.  相似文献   

2.
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites, delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as a benchmark against which future change in the system can be quantified. Received: 30 January 2000 / Accepted: 24 July 2000  相似文献   

3.
The apparent digestibility coefficients for 4 size classes of the green turtle Chelonia mydas feeding on the seagrass Thalassia testudinum were measured in Union Creek, Great Inagua, Bahamas, from September 1975 to August 1976. The values ranged from 32.6 to 73.9% for organic matter; from 21.5 to 70.7% for energy; from 71.5 to 93.7% for cellulose; from 40.3 to 90.8% for hemicellulose; and from 14.4 to 56.6% for protein. Digestive efficiency increased with increases in water temperature and body size. There was no seasonal variation in the nutrient composition of T. testudinum blades. Grazing on T. testudinum may be limited by its low quality as a forage, a result of its high fiber content and possible low protein availability. Turtles did not graze at random over the extensive beds of T. testudinum, but maintained grazing plots of young leaves by consistent recropping. They thus consumed a more digestible forage-higher in protein and lower in lignin-than the ungrazed, older leaves of T. testudinum. The selectivity of green turtles for either a seagrass or algal diet may reflect the specificity of their intestinal microflora.  相似文献   

4.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

5.
There has been an historical decline in the seagrass beds in Maho and Francis Bays, St. John, U.S. Virgin Islands: presently (1986) there are only five small seagrass beds in shallows water. These seagrass beds are highly disturbed by heavy boat usage and are intensively grazed by the green turtle Chelonia mydas L. Fifteen to 50 boats anchor each night in the bays: anchor scars cause a loss of up to 6.5 m2 d-1 or 1.8% yr-1 of the seagrass beds. Seagrasses regrew into such scars only minimally within a period of 7 mo. The size of the green turtle population was estimated at 50 subadults and their feeding behavior was determined by direct observation and radiotelemetry. The behavior of the green turtles differed from other observations published on the species. Here, the turtles grazed all available Thalassia testudinum, their preferred seagrass food, rather than creating discrete grazing scars, and spent all their waking hours (9 h per day) feeding. Areal productivity of T. testudinum leaves (33 to 97 mg dry wt m-2d-1) in the bays was at least an order of magnitude lower than published values or than the productivity of another, lessdisturbed seagrass bed on St. John, despite having comparable leaf-shoot density. Leaf shoots were stunted, fragile, achlorotic, and had only two leaves as opposed to the five leaves per shoot more typically seen. The green turtle population was near the estimated carrying capacity of T. testudinum, based on the standing crop and productivity of T. testudinum and the grazing rate of the turtles. The effect of disturbance of T. testudinum from boats and turtles was assessed by excluding these with emergent fences. Within 3 mo of protection, the areal and shoot-specific productivity of T. testudinum leaves as well as leaf size increased significantly compared to unprotected areas. Conservation efforts are recommended in Maho Bays and Francis because seagrass productivity is low, disturbance rates are higher than recovery rates, the turtles cannot increase further their feeding rate in order to compensate for such factors, and there are few alternate sources of T. testudinum on the north shore of St. John.Contribution No. 175 from West Indies Laboratory, Teague Bay, Christiansted, St. Croix, U.S. Virgin Islands 00820, USA  相似文献   

6.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

7.
Numerous seagrass species growing in high-light environments develop red coloration in otherwise green leaves, yet the ecophysiology of leaf reddening in seagrasses is poorly understood. To increase our understanding of the process of leaf reddening in Thalassia testudinum found in the lower Florida Keys (USA), we identified the molecules responsible for red coloration in leaves and compared physiological, morphological, and growth attributes of entirely red-leafed shoots to entirely green-leafed shoots. We determined that four anthocyanin molecules are responsible for red coloration in leaves. In addition, we found that red leaves had higher concentrations of photoprotective pigments (anthocyanins and UV-absorbing compounds), higher effective quantum yields (ΔF/F m′) at midday, and were shorter, narrower, and weighed less than green leaves. No significant difference in growth rates was observed between red- and green-leafed shoots, but patches of red-leafed shoots had shorter canopy heights and smaller LAI compared to patches of green-leafed shoots. Our results demonstrate that leaf reddening in T. testudinum is caused by high concentrations of anthocyanins, is associated with physiological and morphological attributes, and acts as a sunscreen since red leaves were able to maintain high effective quantum yields at high light intensities.  相似文献   

8.
The entry of meiobenthic copepods from sediments or seagrass blades into the water column and reproductive characteristics of actively migrating fauna were investigated from 1981–1986 in a temperate intertidal Zostera capricorni seagrass bed in Pautahanui Inlet, New Zealand and in a subtidal Thalassia testudinum bed in Tampa Bay, Florida, USA. Emergence of copepods in New Zealand varied over a tidalcycle, while in Florida a distinct diel periodicity was displayed. Selected copepod species in New Zealand had similar numbers emerging from sediments and/or blades over a 6 h period as the common copepods actively migrating from sediments in Florida. Daily abundances of emerging copepods (24 h) in Tampa Bay, Florida, were substantially greater than those in New Zealand, where migration is linked to tidal cover. In Z. capricorni meadows in New Zealand, sex ratios of copepods in sediments and on blades were dominated by females; males dominated water-column samples. In T. testudinum meadows in Tampa Bay, sex ratios of males to females, although of a lowermagnitude than in Z. capricorni beds, were higher in trap than in sediment samples. Differences in sex ratios, the availability in emergence traps of females of appropriate stage for mating, and observations on clasping in live samples from traps suggest that swimming behavior in copepods may be partly linked to prenuptial courtship. Meiobenthic copepods may use the water column as an important habitat for reproductive behavior.  相似文献   

9.
Foraging by the herbivorous parrotfish Sparisoma radians   总被引:2,自引:0,他引:2  
The foraging behavior of the bucktooth parrotfish Sparisoma radians was studied in seagrass beds off St. Croix, US Virgin Islands and in laboratory preference tests. Thalassia testudinum was the dominant item in the field diet with the epiphytized distal portion of the blades most favored. Other seagrasses, Syringodium filiforme and Halodule wrightii, were taken in relation to their abundance. Several algae were also eaten, particularly Halimeda spp. and Penicillus spp. Although abundances of the algae varied, the fish maintained a steady mixture of plant species in their diet. Laboratory feeding tests for various plants presented in pairs showed clear preferences in nearly all cases. The preference hierarchy was (1) T. testudinum with epiphytes, (2) H. wrightii, (3) T. testudinum without epiphytes, (4) S. filiforme, and the algae, (5) Dictyota divaricata, (6) Enteromorpha flexuosa, (7) Caulerpa mexicana, (8) Halimeda incrassata and (9) Penicillis pyriformis. Preference did not vary significantly with satiation. The catch per unit effort (kilocalories absorbed per bite) was calculated for each plant, using (a) absorption values calculated for S. radians fed the different plants, (b) the calorific values for tested plants, and (c) an estimate of the amount of material taken per bite. The ranking of catch per unit effort closely paralleled the preference hierarchy with the exception of C. mexicana which has a toxin. Fish fed diets of single plants, mixed plant diet, and starved controls showed differential survival which paralleled the preference hierarchy, the most preferred plants leading to longest survival. Comparison of laboratory results with field feeding behavior shows that inclusion of plants in the diet is not related directly to preference rank, availability or survival value, but that the fish deliberately eat a variety of plants presumably which maintains balanced diet. This result indicates that models of optimal foraging for herbivores should include nutrient constraints and avoidance of toxins in order to predict accurately the behavior of an animal in the field.  相似文献   

10.
Before populations of green turtles (Chelonia mydas) were severely reduced by human overexploitation, the seagrass Thalassia testudinum was intensively grazed by green turtles in the Caribbean. To explore how nutrient composition of T. testudinum pastures responds to intense grazing pressure, we simulated green turtle grazing in 15 plots (each 3 m × 3 m) for 16 months in the central Bahamas. Comparisons of clipped plots with 15 adjacent control (unclipped) plots revealed that simulated grazing resulted in significantly higher energy, nitrogen, phosphorus, lignin, cutin, and condensed tannin content in blades in clipped plots, but sediment organic content was not affected. By continually re-cropping blades in grazing plots, turtles ingest young, actively growing blade tissue with higher energy, nitrogen, and phosphorus concentrations. Our 16-month clipping trial did not generate the expected decline in nutrient content in T. testudinum blades under intensive grazing. However, significant decreases in nitrogen and organic matter reserves in rhizomes, with declines apparent after 16 and 11 months, respectively, indicate that nutrient content of blades and/or blade productivity may decline under continued clipping.  相似文献   

11.
Thalassia testudinum leaf dynamics in a Mexican Caribbean coral reef lagoon   总被引:1,自引:0,他引:1  
Shoot density, leaf growth, initiation, biomass and primary production in Thalassia testudinum (Banks ex König) were monitored at monthly intervals from August 1990 until January 1992 at three stations in the tropical coral reef of Puerto Morelos lagoon, Mexico. Leaf growth decreased with increasing leaf length, declining rapidly once the tips of leaves had started to decay; however, the leaves continued to grow until complete senescence. Maximum potential leaf age was>90 d. Leaf growth, biomass and primary production were highest at the station in the vicinity of mangrove discharges, intermediate at the nearshore fringe of the seagrass meadow, and lowest at the back-reef station. Leaf growth, leaf initiation, biomass and primary production were minimum in the winter months and maximum in the summer. Leaf growth and primary production were significantly correlated with water temperature or/and the hours of daylight. This is the first report of temperature-or/and hours of daylight-related seasonal variability in T. testudinum production from the tropical Caribbean.  相似文献   

12.
Nitrogen fixation in the rhizosphere of marine angiosperms   总被引:9,自引:0,他引:9  
High rates of acetylene reduction were observed in systems containing excised rhizomes of the Caribbean marine angiosperms Thalassia testudinum, Syringodium filiforme and Diplanthera wrightii, and the temperate marine angiosperm Zostera marina. For 4 plant and plant-sediment systems the ratio of acetylene reduced/N2 fixed varied from 2.6 to 4.6. For T. testudinum the estimated rates of nitrogen fixation are in agreement with estimated requirements of the plant for nitrogen. For a typical T. testudinum stand, N2 fixation is estimated to be 100 to 500 kg N/hectare per year. Numbers of N2-fixing bacteria in the rhizosphere sediments were roughly 50 to 300 times more abundant than those in the nonrhizosphere sediments, and in both types of sediments were of the same orders as the estimated numbers of heterotrophic aerobes.Canadian IBP Contribution No. 137.  相似文献   

13.
V. Zupo  W. G. Nelson 《Marine Biology》1999,134(1):181-190
The ecological role and the association of Hippolyte zostericola (Smith, 1873) (Decapoda: Natantia) with different seagrass species in the Indian River Lagoon (Florida, USA) were investigated through field sampling and the analysis of diet, size–frequency distributions and laboratory experiments. Gut contents suggested that H. zostericola is a mesograzer which may be important in the transfer of primary production to higher trophic levels. Population size–frequency distributions showed a polymodal pattern variable according to the site. Preference experiments indicated that choice of seagrass species is not influenced by the available surface area of seagrass blades, nor by the presence of epiphytic food. Significant responses of the shrimp to the ambient light field, mediated by the seagrass canopy, were detected. A clear negative phototropism was observed for H. zostericola which may be an adaptive response to improve avoidance of visual predators. Received: 1 February 1998 / Accepted: 21 December 1998  相似文献   

14.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

15.
Epifaunal crustaceans on turtlegrass (Thalassia testudinum) and five dominant macroalgae (Anadyomene stellata, Digenia simplex, Halimeda incrassata, Laurencia poitei and Penicillus lamourouxii) were quantitatively sampled bimonthly over a one-year period from September 1979 to September 1980 in a subtropical seagrass meadow in Apalachee Bay, Florida (northeastern Gulf of Mexico). These plant species exhibited a wide range of morphologies, with surface area-to-biomass ratios differing by over 2.5 times. A similar suite of crustaceans occurred on all macrophytes despite differences in shape or architecture among plant species. Relative abundances of many crustaceans, however, varied among plant hosts. Similarity analysis indicated that the epifaunal associates of T. testudinum were distinct from those of the macroalgae. Species richness was generally higher on turtlegrass than on any of the macroalgae. Abundances of total crustaceans per plant biomass or per plant surface area, on the other hand, were greater on all macroalgal species compared to the seagrass. Abundances (per plant biomass or plant surface area) of 14 of the 16 numerically dominant epifaunal species differed significantly among macrophytes. Twelve of the 16 species had greater abundance on one or more macroalgae, while only two species were more abundant on T. testudinum. Almost half of the dominant species had greatest abundances on the branching red alga L. poitei. Although abundances per plant biomass and plant surface area were greater on macroalgae relative to turtlegrass, densities (individuals per meter square of bottom) of animals associated with T. testudinum were significantly greater than those associated with macroalgae, primarily because of the greater abundance of turtlegrass in the grass bed. Both surface area-to-biomass ratios and degree of branching were poorly correlated with epifaunal abundance and number of species. Neither structural feature is an adequate predictor of faunal abundance and species richness among plant species, especially when macrophytes with very different morphologies are compared.  相似文献   

16.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

17.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

18.
In 57 l-m2 samples within a meadow of Halodule wrightii in Bogue Sound, North Carolina, USA, densities of the clams Mercenaria mercenaria and Chione cancellata were positively associated with seagrass cover. Where seagrass was experimentally removed, marked individuals of both clam species exhibited high rates of mortality in fine sand sediments during two successive experiments spanning 13 months. In the unaltered (control) seagrass meadow, M. mercenaria density remained constant over 13 months and C. cancellata density declined at a slower rate than in the unvegetated plots. Seagrass provides these clams with a refuge from whelk (Busycon carica, B. contrarium, and B. canaliculatum) predation, the major cause of mortality and population decline in experimentally unvegetated plots. In 2 factorial field experiments in unvegetated substratum in which densities of M. mercenaria and C. cancellata were varied independently, first over 5 levels (0 X, 1/2X, 1 X, 2 X, 4 X) and subsequently over 4 levels (0 X, 1/4 X, 1 X, 4 X), there was no repeatable intra- or interspecific effect of density on percent survival, or on the rate of any mortality type. Whelk predation fell preferentially on larger size classes of both species, whereas factors which contribute to clam disappearance usually acted more intensely on smaller sizes. Experimental exclusion of large predators by caging demonstrated that even in unvegetated substratum survivorship of both clam species was high in the absence of whelks and other predators. Individuals of C. cancellata live closer to the sediment surface than those of M. mercenaria, which may explain why seagrass does not serve as effectively to protect them from whelk predation. The mechanism of whelk inhibition may depend upon sediment binding by the H. wrightii root mat, which produces a demonstrable decrease in the physical penetrability of surface sediments.  相似文献   

19.
The decomposition of the mangrove Rhizophora mangle and the seagrass Thalassia testudinum was examined using litterbags along a natural gradient in nutrient availability. Seagrass leaves had a higher fraction of their biomass in the labile pool (57%), compared to mangrove leaves (36%) and seagrass rhizomes (29%); the overall decomposition rates of the starting material reflected the fractionation into labile and refractory components. There was no relationship between the N or P content of the starting material and the decomposition rate.

Nutrient availability had no influence on decomposition rate, and mass was lost at the same rate from litterbags that were buried in the sediment and litterbags that were left on the sediment surface. The dynamics of N and P content during decomposition varied as a function of starting material and burial state. N content of decomposing mangrove leaves increased, but seagrass rhizomes decreased in N content during decomposition while there was no change in seagrass leaf N content. These same general patterns held for P content, but buried seagrass leaves increased in P content while surficial leaves decreased. δ13C and δ15N changed by as much as 2‰ during decomposition.  相似文献   

20.
A 6-day in situ comparison between the Wetzel inorganic 14C uptake and Zieman leaf-biomass techniques for measuring net primary production rates in the seagrass Thalassia testudinum was performed in the northeastern Gulf of Mexico. Measurement differences between the two methods were insignificant when the 14C uptake technique was corrected for sediment 14C uptake (13%), incubation-chamber light-energy absorption (14%) and differences in total light-energy which resulted from the experimental design (7.7%). These results reinforce previous observations that the 14C technique estimates net particulate-carbon production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号