首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.  相似文献   

2.
The acidification of surface waters has profound ecological consequences. There is a need to predict the effects of possible future patterns of acid deposition on the biological components of fresh waters. This paper describes a model of the relationships between water chemistry and macroinvertebrate assemblages in eighteen streams in the upper Tywi whose catchments are subject to different land uses. Using established statistical techniques on data sets derived from riffle and margin samples taken in spring and summer, the macroinvertebrate assemblages were classified into three groups, which corresponded with streams draining conifer afforested catchments, acidic moorland streams and circumneutral moorland streams. Following principal components analysis to select key environmental variables, the application of multiple discriminant analysis generated two discriminant functions which were related most strongly to mean filterable aluminium concentration and mean total hardness, respectively. The discriminant functions were used to assign site-group membership with 100% success in the case of the spring data set with combined habitats. In addition, multiple regression of the primary ordination axis of each data set on mean aluminium concentration and mean hardness or pH, produced equations which explained 62.0%-87.2% of the variance. We conclude that the methods used here provide an effective analytical and potentially predictive tool for use in the understanding and management of the impact of acidification on freshwater ecosystems.  相似文献   

3.
Previous studies relating forest presence to stream acidity and aluminium concentration were based on small numbers of catchments, often precluding the elimination of confounding influences on stream chemistry, such as geology or soil type. Spatial patterns in aluminium and pH data from 113 Welsh catchments of contrasting land use were therefore analysed in three different ranges of acid sensitivity (< 10, 10-15, 15-25 mg CaCO(3) litre(-1) total hardness). In each range, pH declined and aluminium increased significantly with increasing percentage forest cover. There was no evidence that the relationships reflected a spurious effect of forest location. Where aluminium concentrations were elevated under forest in a sub-set of 13 streams, aluminium was present predominantly in the labile form, most toxic to fish. Regressions of pH and aluminium on percentage forest cover provide a useful method of assessing the amount of forest in Welsh catchments which might give rise to given chemical conditions (e.g. pH <6, Al > 80 microg litre(-1)), though some difficulties are likely in accurately specifying the conditions desirable for fish or other biota.  相似文献   

4.
The natural range of variation of ecosystems provides reference conditions for sustainable management and biodiversity conservation. We review how the understanding of natural reference conditions of boreal forests in northern Europe has changed from earlier perceptions of even-aged dynamics driven by stand-replacing disturbances towards current understanding highlighting the role of non-stand-replacing disturbances and the resultant complex forest dynamics and structures. We show how earlier views and conceptual models of forest disturbance dynamics, including the influential ASIO model, provide estimates of reference conditions that are outside the natural range of variation. Based on a research synthesis, we present a revised forest reference model incorporating the observed complexity of ecosystem dynamics and the prevalence of old forests. Finally, we outline a management model and demonstrate its use in forest ecosystem management and show how regional conservation area needs can be estimated. We conclude that attaining favourable conservation status in northern Europe’s boreal forests requires increasing emphasis on ecosystem management and conservation for old forest characteristics.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01444-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
To determine the potential impacts of lawn-care pesticides on aquatic ecosystems, the macroinvertebrate communities of six streams were assessed using a multimetric approach. Four streams flowed through residential neighborhoods of Peachtree City, GA, USA, with differing mean property values and two reference streams were outside the city limits. A series of correlation analyses were conducted comparing stream rank from water quality and physical stream parameters, habitat assessments, benthic macroinvertebrate metric, pesticide toxicity and metal toxicity data to determine relationships among these parameters. Significant correlations were detected between individual analyses of stream rank for pesticide toxicity, specific conductance, turbidity, temperature and dissolved oxygen with benthic macroinvertebrate metrics.  相似文献   

6.
The environmental influence on the mercury content in roach (Rutilus rutilus L.) is investigated using partial least square regression on 46 environmental variables describing the land use in the catchment area, various catchment area and lake characteristics, lake water chemistry, and fish stock. The Hg content in the fish from the 78 investigated circumneutral lakes is heavily influenced by the land use in their surroundings. The boreal forest lakes possessed the highest Hg levels in roach, whereas fish from lakes surrounded by arable land had lower levels. The Hg levels also showed a negative relationship to the amount of dissolved ions and the total amount of nutrients in lake water. Lake pH did not have any significant influence on the Hg content in roach in these non-acidified lakes. The Hg levels in lakes influenced by large amounts of wetland were less well explained by the presently investigated environmental variables, which implies that the Hg burden in fish from this kind of lake is governed by other factors.  相似文献   

7.
Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations.  相似文献   

8.
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree–mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.  相似文献   

9.
The structure of stream benthic macroinvertebrate communities in relation to pH and humic content was studied in 20 second and third-order forest streams in southern Sweden. Streams varied in pH from 4.2 to 8.0, and in humic content from a colour of 5 to 1200 mg Pt litre(-1). There was a positive relationship between pH and species richness, with a discontinuity occurring at pH approximately 5.7. At pH > 5.7, species richness decreased with increasing colour. At pH < 5.7 there was a positive correlation between species richness and humic concentration up to a colour of about 200-300 mg Pt litre(-1). this may be explained by high concentrations, 0.4-0.9 mg litre(-1), of labile monomeric Al occurring in the low coloured acid streams. In streams with a colour > 200 mg Pt litre(-1) labile monomeric Al was less than 0.2 mg litre(-1). There was no significant change in species richness above this threshold, but a shift in species composition towards a dominance of Plecoptera and Chironomidae. This threshold model seems to explain the observed differences in stream benthic community structure better than a simple linear relationship with pH or humic content.  相似文献   

10.
Land use has obvious influence on surface water quality; thus, it is important to understand the effects of land use patterns on surface water quality. This study explored the relationships between land use patterns and stream nutrient levels, including ammonium-N (NH4 +-N), nitrate-N (NO3 ?-N), total N (TN), dissolved P (DP), and total P (TP) concentrations, in one forest and 12 agricultural catchments in subtropical central China. The results indicated that the TN concentrations ranged between 0.90 and 6.50 mg L?1 and the TP concentrations ranged between 0.08 and 0.53 mg L?1, showing that moderate nutrient pollution occurred in the catchments. The proportional areal coverages of forests, paddy fields, tea fields, residential areas, and water had distinct effects on stream nutrient levels. Except for the forest, all studied land use types had a potential to increase stream nutrient levels in the catchments. The land use pattern indices at the landscape level were significantly correlated to N nutrients but rarely correlated to P nutrients in stream water, whereas the influence of the land use pattern indices at the class level on stream water quality differentiated among the land use types and nutrient species. Multiple regression analysis suggested that land use pattern indices at the class level, including patch density (PD), largest patch index (LPI), mean shape index (SHMN), and mean Euclidian nearest neighbor distance (ENNMN), played an intrinsic role in influencing stream nutrient quality, and these four indices explained 35.08 % of the variability of stream nutrient levels in the catchments (p<0.001). Therefore, this research provides useful ideas and insights for land use planners and managers interested in controlling stream nutrient pollution in subtropical central China.  相似文献   

11.
Acid mine drainage (AMD) is frequently linked with changes in macroinvertebrate assemblages, but the relative contribution of water and sediment to toxicity is equivocal. We have shown that the macroinvertebrate fauna of Neubecks Ck, a mine impacted stream in New South Wales, Australia, was much poorer than in two reference streams. Multivariate RELATE analyses indicated that the patterns in the biological data were more strongly correlated with the concentrations of common metals in the surface water than the pore water of these streams. From this we hypothesised that the water was more toxic to the biota than the sediment and we tested this hypothesis with a sediment transplant experiment. Sediment from Neubecks Ck that was placed in reference streams retained high concentrations of metals throughout the experiment, yet supported a macroinvertebrate assemblage similar to that in the reference streams. Sediment from the reference streams that was placed in Neubecks Ck supported few, if any, animals. This indicates that water in Neubecks Ck is toxic to biota, but that sediment is able to support aquatic biota in clean water. Therefore, remediation should focus on improving water quality rather than sediment quality.  相似文献   

12.
Exploring how water quality and land use shape the benthic macroinvertebrate community composition is of widespread interest in biodiversity conservation and environmental management. In this study, we investigated the structures of benthic macroinvertebrate assemblages and their environmental controls in terms of water quality and riparian land use in the Jinshui River, China. We carried out three campaigns including wet season (August 2009), dry season (November 2009), and normal season (April 2010) based on the hydrological regime in Jinshui basin. The result showed that macroinvertebrate assemblage variations were better explained by water quality factors than land use based on variance partitioning procedure. The land use of 2 km upstream from the sampling sites had explained more variation than that of the whole riparian zone in upstream catchment on macroinvertebrate community, and land use of 2 km upstream also had more interactions with water quality. Canonical correspondence analysis (CCA) indicated that the elements or nutrient of magnesium (Mn), selenium (Se), strontium (Sr), silicon (Si), dissolved inorganic nitrogen (DN), sulfur (S), total organic carbon (TOC), and total nitrogen (TN) in water exhibited a strong relationship with macroinvertebrate assemblages. However, the variance in water quality explained by land use was lower than that explained by water quality in rivers using redundancy analysis. Our study suggested that proximate factors (i.e., water quality) were more important to interpret the macroinvertebrate community compared to ultimate factors (i.e., land use) for macroinvertebrate assemblages in river system.  相似文献   

13.
We assessed the influence of environmental variables (elevation, stream order, distance from source, catchment area, slope, stream width, and fish species richness) on the co-occurrence patterns of the minnow, the stone loach, and the gudgeon at the stream system scale. A total of 474 sites were classified according to the seven variables using the Self-Organizing Map (neural network), and three clusters were detected (k-means algorithm). The frequency of the various fish co-occurrence patterns was calculated for each cluster, and general linear modeling was used to specify the conditions that predict the occurrence of each species. Piedmont streams were more likely to support coexisting gudgeon and minnow populations because of higher probabilities of occurrence for both species. The higher co-occurrence frequency for the three species together in headwater streams resulted from lower occurrence frequencies in gudgeon and minnow. Focusing on areas that favor the co-occurrence of species may enhance the effectiveness of conservation projects.  相似文献   

14.
To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations.  相似文献   

15.
Water quality monitoring in reservoirs used for human water consumption, carried out by the Alentejo Regional Authorities of the Environment (south Portugal), revealed seasonal peaks of phenolic compounds above the water-quality legislation. The main objectives of this work were to identify the main phenolic compounds present in water and soil leachates, and to determine the sources of the seasonal concentrations of phenolic compounds in two catchments with different land use patterns: Roxo and Santa Clara catchments. The main phenolic compound detected was 2,4-dinitrophenol (2,4-DNP), both in stream water and soil leachates, with concentrations higher in Roxo catchment. Roxo catchment represents a larger agricultural area than Santa Clara, and it is likely that the origin of the 2,4-DNP is associated with the use of pesticides. A peak of 2,4-DNP concentrations was observed in stream water of both catchments during February, when farmers plough their fields and apply pesticides. The 2,4-DNP peak was probably caused by a precipitation event shortly after the application of pesticides, increasing their transfer from land surfaces to adjacent streams. The leaching behaviour of 2,4-DNP was strongly dependent on the type of soil and pH. In soils with high clay content and low pH, 2,4-DNP was easily adsorbed, and its runoff from the soil to adjacent streams was reduced. Ribeira de Santa Vitória, from Roxo catchment, was the only stream showing a high abundance of vegetation, and the lowest concentrations of 2,4-DNP in water. Plants may play a role in removing contaminants from stream water.  相似文献   

16.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

17.
In-stream nitrogen, phosphorus, organic carbon, and suspended sediment concentrations were measured in 18 subbasins over 2 annual cycles to assess how land use and land cover (LULC) and stream discharge regulate water quality variables. The LULC was a primary driver of in-stream constituent concentrations and nutrient speciation owing to differences in dominant sources and input pathways associated with agricultural, urban, and forested land uses. Stream discharge was shown to be a major factor that dictated not only the magnitude of constituent concentrations, but also the chemical form. In high discharge agricultural subbasins, where nitrate was the dominant nitrogen form, there was a negative correlation between discharge and nitrate concentration indicating groundwater inputs as the dominant pathway. In urban settings, however, nitrate was positively correlated with discharge, and, in forested subwatersheds, where dissolved organic nitrogen (DON) was the dominant nitrogen form, there was a positive correlation between discharge and DON, indicating washoff from the watershed as the dominant input pathway. Similarly, phosphorus concentrations were strongly regulated by LULC, discharge, and seasonality. This comparative study highlights that different mechanisms regulate different forms of nitrogen, phosphorus, and carbon, and thus field programs or water quality models used for regulatory purposes must assess these nutrient forms to accurately apply management plans for nutrient reductions.  相似文献   

18.
A review of the export of carbon in river water: fluxes and processes   总被引:3,自引:0,他引:3  
This review summarizes data on exports of carbon from a large number of temperate and boreal catchments in North America, Europe and New Zealand. Organic carbon losses, usually dominated by dissolved organic matter, show relatively little variation, most catchments exporting between 10 and 100 kg C ha(-1) yr(-1). Inorganic carbon exports occur at a similar rate. However, a lack of information on the flux of particulate organic carbon and dissolved CO2 is highlighted, particularly for rivers in Europe. Processes regulating the flux of organic carbon to streams and its subsequent fate in-stream are reviewed, along with the effects of land use and acidification on these processes. The size of the global riverine flux of carbon in relation to the global carbon cycle and the possible effects of environmental change on the export of carbon in rivers are considered.  相似文献   

19.
Controlled releases of NH4-N and conservative tracers (Br- and Cl-) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d(-1) and retention of NH4-N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH4-N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH4-N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH4-N retention if plant biomass is reduced because of reduced contact times between NH4-N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity.  相似文献   

20.
The benthic macroinvertebrate fauna of Asher Creek, a 4th order stream with a base flow of 0.03 m(3)/s, was monitored on 11 occasions for 532 days following a 1.5 million liter domestic crude oil spill. Aquatic insects, crustaceans, segmented worms, roundworms, flatworms, snails, freshwater mussels and other benthic organisms in the oil impacted area were reduced to less than 0.1% of expected numbers at the first sampling period 25 days after the spill. Species diversity indices and the number of mayfly and stonefly taxa were less than the minimum values established for unpolluted Missouri streams for 11 months. The initial post-spill community was dominated by Chironomidae (midges), Simuliidae (blackflies) and Oligochaeta (segmented worms). Some species of Plecoptera (stoneflies), Ephemeroptera (mayflies) and Trichoptera (caddisflies) were absent from the fauna for as long as 9 months. The functional feeding groups of scrapers, filterers, gatherers, and predators initially decreased in relative abundance. Predators later increased in response to a rapidly expanding prey base. Shredders did not change in relative abundance throughout the recovery period. Oil was visually present in the stream riffle substrate for 453 days following the spill. Dissolved oxygen, pH and conductivity were not affected. The visible appearance of oil in the stream substrate was a simple predictor of the status of the benthic invertebrate community. Areas protected with surface skimming siphon dams were less severely impacted and recovered more rapidly than areas where the stream substrate was inundated with oil. The most apparent factors controlling the recovery were the total volume of water passing through the contaminated area and the occurrence of scouring flood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号