首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The sites at Bangombé and Okélobondo (Oklo) in Gabon provide a unique opportunity to study the behaviour of products from natural nuclear reactions in the vicinity of reactor zones which were active around two billion years ago. The Commission of the European Communities initiated the Oklo Natural Analogue Programme. One of the principal aims was to study indications of present time migration of elements from the reactor zones under ambient conditions. The hydrogeological and hydrochemical data from the Oklo sites were modelled in order to better understand the geochemical behaviour of radionuclides in the natural system, by using independent models and by comparing the modelling outcome. Two modelling approaches were used: M3 code (hydrochemical mixing and mass balance model), developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) and HYTEC (reactive transport model) developed by Ecole des Mines de Paris. Two different reactor zones were studied: Bangombé, a shallow site, the reactor being at 11 m depth, and OK84 at Okélobondo, situated at about 450 m depth, more comparable with a real repository location. This allowed the validation of modelling tools in two different sedimentary environments: one shallow, with a more homogeneous layering situated in an area of meteoric alteration, and the other offering the opportunity to study radionuclide migration from the reaction zone over a distance of 450 m through very heterogeneous sedimentary layers. The modeling results indicate that the chemical reactions retarding radionuclide transport are very different at the two sites. At Bangombé, the decomposition of organic material consumes oxygen and at Okélobondo the oxygen is consumed by inorganic reactions resulting, in both cases, in uranium retardation. Both modelling approaches (statistic with M3 code and deterministic with HYTEC code) could describe this situation. The goal of this exercise is to test codes which can help to describe and understand the processes taking place at the sites, validate the models with in situ data, and thus build confidence in the tools used for future site characterization. Ultimately, this allows identifying and selecting processes and parameters that can be used as input into repository performance assessment calculations and modelling exercises.  相似文献   

2.
3.
The stability of uranium-bearing minerals in natural environments is of interest to evaluate the feasibility of radioactive waste repositories. The uraninite bodies, UO2(s), in the Oklo district (Gabon) are the result of a natural fission process, which took place 1970 Ma ago. These deposits can be regarded as natural analogues for spent fuel. One of the uraninite bodies, the Okélobondo deposit, is located at a depth of 300 m. Groundwater samples from boreholes located at shallow depths (100-200 m) show neutral to basic pH, anoxic conditions (Eh = 0.10 to -0.05 V) and are saturated with respect to uraninite. In contrast, deeper samples collected in the vicinity of the ore body are oxidising (Eh = 0.32-0.47 V), slightly basic (pH = 7.0-8.5) and undersaturated with respect to uraninite. These oxidising conditions at depth, if present under repository conditions, may affect the stability of uranium oxide. In order to improve our understanding of the observed site geochemistry, the available information on the lithology and groundwater flow was integrated in a reactive transport model. The chemical composition and the pH-Eh values of the water sampled above and in the western side of the Okélobondo deposit can be explained by the interaction of meteoric recharge with pelites, dolomites and sandstones. The dissolution of Fe(II)-silicates and the oxidation of the Fe(II)-aqueous species maintained the pH-Eh distribution along the Fe(2+)-Fe(OH)3(am) equilibrium, with the result that uraninite does not dissolve. This may explain the lower uranium content in the water samples from pelites and dolomites above the Okélobondo deposit. The high Mn/Fe ratio and the high pH-Eh values of the water sampled at depth, close to the Okélobondo deposit, suggest a control by the Mn(2+)-MnOOH(s) equilibrium. This control is attributed to the dissolution of a large rhodochrosite, MnCO3(s), and manganite, MnOOH(s) deposit in the recharge area on the eastern side.  相似文献   

4.
It is demonstrated that at steady state, the 1D thermo-kinetic hydrochemical Eulerian mass balance equations in pure advective mode are indeed identical to the governing mass balance equations of a single reaction path (or geochemical) code in open system mode. Thus, both calculated reaction paths should be theoretically identical whatever the chemical complexity of the water-rock system (i.e., multicomponent, multireaction zones kinetically and equilibrium-controlled). We propose to use this property to numerically test the thermo-kinetic hydrochemical Eulerian codes and we employ it to verify the algorithm of the 1D finite difference code KIRMAT. Compared to the other methods to perform such numerical tests (i.e., comparisons with analytical, semi-analytical solutions, between two Eulerian hydrochemical codes), the advantage of this new method is the absence of constraints on the chemical complexity of the modelled water-rock systems. Moreover, the same thermo-kinetic databases and geochemical functions can be easily and mechanically used in both calculations, when the numerical reference comes from the Eulerian code with no transport terms (u and D = 0) and modify to be consistent with the definition of the open system mode in geochemical modelling. The ability of KIRMAT to treat multicomponent pure advective transport, subjected to several kinetically equilibrium-controlled dissolution and precipitation reactions, and to track their boundaries has been successfully verified with the property of interest. The required numerical validation of the reference calculations is bypassed in developing the Eulerian code from an already checked single reaction path code. A forward time-upstream weighting scheme (a mixing cell scheme) is used in this study. An appropriate choice of grid spacing allows to calculate within the grid size uncertainty the correct mineral reaction zone boundaries, despite the presence of numerical dispersion. Its correction enables us to improve the convergence and to extend the numerical test to mixed advective-dispersive mass transport. However, the skewness factor involves numerical oscillations that prevent to compute different grid spacing. The use of a different chemically controlled time step constraint in both calculations induces some inconsistencies into the validation tests. This numerical validation method may be applied as well as to check a thermo-kinetic hydrochemical finite element based code, from a 1D heterogeneous systems, and 2D-3D systems provided that they are designed so as to be 1D equivalent. A one-step algorithm and the use of a numerical reference coming from the Eulerian code to be tested ensure the potential success (accuracy) of the numerical validation method.  相似文献   

5.
The interactions between cement and a clayey host-rock of an underground repository for intermediate-level radioactive waste are studied with the reactive transport code HYTEC for supporting performance assessment. Care is taken in using relevant time scales (100,000 years) and dimensions. Based on a literature review, three hypotheses are considered with respect to the mineralogical composition of the claystone and the neo-formed phases. In the long term, the pH is buffered for all hypotheses and important mineral transformations occur both in cement and the host-rock. The destruction of the primary minerals is localized close to the cement/claystone interface and is characterized by the precipitation of secondary phases with retention properties (illite, zeolite). However, beyond the zone of intense mineral transformations, the pore water chemistry is also disturbed over a dozen meters due to an attenuated but continuous flux of hydroxyl, potassium and calcium ions. Four interdependent mechanisms control the profile in the whole system: diffusion of the alkaline plume, mineralogical buffering, ion exchange and clogging of the pore space at the cement/claystone interface. The migration of a selected group of radionuclides (Cs, Ra, Tc and U) is explicitly integrated in the simulations of the strongly coupled system. Theoretical profiles of distribution coefficient (Kd) and solubility limit values are derived from the simulations, and their sensitivity with respect to the system evolution is estimated.  相似文献   

6.
Oxidative dissolution of uranium dioxide (UO2) and the subsequent migration of uranium in a subsurface environment and an underground waste disposal have been simulated with reactive transport models. In these systems, hydrogeological and chemical processes are closely entangled and their interdependency has been analyzed in detail, notably with respect to redox reactions, kinetics of mineralogical evolution and hydrodynamic migration of species of interest.Different codes, where among CASTEM, CHEMTRAP and HYTEC, have been used as an intercomparison and verification exercise. Although the agreement between codes is satisfactory, it is shown that the discretization method of the transport equation (i.e. finite elements (FE) versus mixed-hybrid FE and finite differences) and the sequential coupling scheme may lead to systematic discrepancies.  相似文献   

7.
Measurements of chemical species and meteorological parameters were made at a site located 440 m above the mean basin level of Mexico City, over a two-week period in November during Project Azteca. Data from three of the stations of Mexico City's air quality monitoring network (Red Automática de Monitoreo Ambiental, RAMA) were also used to estimate the dilution in concentration experienced by pollutants as they are transported upslope during the course of the day. Both carbon monoxide and sulfur dioxide show a dilution of up to 50%, while ozone is usually more concentrated at the elevated site. These comparisons clearly highlight the intrinsic differences between primary and secondary gases, which are supported also by time–space, cross correlation analysis. The thermal mesoscale wind circulation dominates concentrations of pollutants at the research site: upslope during the day and downslope during the night. The data present clear evidence that downslope flows during the night contribute to ozone concentration at basin sites.  相似文献   

8.
Numerical simulation of cation exchange and mineral precipitation/dissolution reactions using the multiphase reactive geochemical transport code TOUGHREACT has provided important insight into the distribution of (90)Sr among layers of geologic strata in a complex vadose zone at the U. S. Department of Energy's Idaho National Laboratory. During a transfer operation in November 1972, 70.4 m(3) of acidic, high ionic strength liquid containing 15,900 Ci of (90)Sr was released over five days into alluvial gravels 137 m above the Snake River Plain Aquifer. Sampling data from perched water zones 33 m below the release contain very high levels of (90)Sr as do soil samples obtained nearer the point of release. Use of traditional simulation approaches using laboratory-measured constant partitioning coefficients (K(d)) cannot simultaneously explain perched water and soil concentrations. To address the discrepancy, a reactive transport approach was adopted to include competitive cation exchange, dissolution/precipitation of calcite, carbon dioxide gas production and transport, and gibbsite precipitation. Simulation results using this model suggest that some of the (90)Sr could have been transported very rapidly immediately after the release with the acceleration facilitated by competition for cation exchange sites with high sodium concentrations in the released liquid and calcium dissolved from calcite, and to a lesser extent by formation of aqueous complexes with nitrate. Once the leading edge of the liquid assemblage was flushed from the alluvium, the mobility of the remaining (90)Sr decreased significantly in the absence of the competing cations. Calculations indicate that there should be a net increase in calcite, suggesting that (90)Sr could be entrained in the mineral lattice, but insufficient field data exist for confirmation. Sensitivity studies show that the cation exchange selectivity coefficients were the most sensitive individual parameters determining the (90)Sr distribution. However, the most sensitive overall quantity was the total ion exchange capacity which is a function of the moles of exchange sites per volume of pore water, the cation exchange capacity, and the total volume wetted by the infiltrating solution. In contrast, the future mobility of (90)Sr was found to be relatively insensitive to the normal range in the composition of influxing precipitation and anthropogenic waters.  相似文献   

9.
To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co is carrying out site investigations, including extensive studies of different parts of the surface ecosystems, at two sites in Sweden. Here we use the output from detailed modeling of the carbon dynamics in the terrestrial, limnic and marine ecosystems to describe and compare major pools and fluxes of organic matter in the Simpevarp area, situated on the southeast coast of Sweden. In this study, organic carbon is used as a proxy for radionuclides incorporated into organic matter. The results show that the largest incorporation of carbon into living tissue occurs in terrestrial catchments. Carbon is accumulated in soil or sediments in all ecosystems, but the carbon pool reaches the highest values in shallow near-land marine basins. The marine basins, especially the outer basins, are dominated by large horizontal water fluxes that transport carbon and any associated contaminants into the Baltic Sea. The results suggest that the near-land shallow marine basins have to be regarded as focal points for accumulation of radionuclides in the Simpevarp area, as they receive a comparatively large amount of carbon as discharge from terrestrial catchments, having a high NPP and a high detrital accumulation in sediments. These focal points may constitute a potential risk for exposure to humans in a future landscape as, due to post-glacial land uplift, previous accumulation bottoms are likely to be used for future agricultural purposes.  相似文献   

10.
Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Asp? underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.  相似文献   

11.
This study, for the first time, investigates and quantifies the influence of slight changes in solution pH and ionic strength (IS) on colloidal microsphere deposition site coverage by Suwannee River Humic Acid (SRHA) in a column matrix packed with saturated iron-oxide coated sand.Triple pulse experimental (TPE) results show adsorbed SRHA enhances microsphere mobility more at higher pH and lower IS and covers more sites than at higher IS and lower pH. Random sequential adsorption (RSA) modelling of experimental data suggests 1 μg of adsorbed SRHA occupied 9.28 ± 0.03 × 109 sites at pH7.6 and IS of 1.6 mMol but covered 2.75 ± 0.2 × 109 sites at pH6.3 and IS of 20 mMol. Experimental responses are suspected to arise from molecular conformation changes whereby SRHA extends more at higher pH and lower ionic strength but is more compact at lower pH and higher IS. Results suggest effects of pH and IS on regulating SRHA conformation were additive.  相似文献   

12.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

13.
The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.  相似文献   

14.
Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak within a few decades or continue to increase until after 2050 depends on the dominant land use functions in the areas, their hydrology and geochemical build-up.  相似文献   

15.
Current design concepts for low-/intermediate-level radioactive waste disposal in many countries involve emplacement underground in a cementitious repository. The highly alkaline groundwaters at Maqarin, Jordan, are a good analogue for the cementitious pore waters that will be present within such a repository. A geochemical modelling study of these groundwaters has been carried out in order to test the applicability of equilibrium models in geochemical programs and their associated thermodynamic databases in such hyperalkaline conditions. This was achieved by comparison of elemental solubilities and speciations predicted by the programs with observations in the natural system. Five organisations took part in the study: AEA Technology, U.K.; Chalmers University of Technology, Sweden; MBT Tecnología Ambiental, Spain; Nagra, Switzerland; and SKB, Sweden. The modelling study was coordinated by the University of Berne.The results of the study showed good agreement between the predictions of the programs employed. Comparison of the observed solids with those predicted by the models has allowed limited validation of the databases. The results for U and Se are presented here.  相似文献   

16.
The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more detailed information on flow and chemical behaviour (dissolved sulphate concentrations, remaining mass of solid sulphate) in the network. Nevertheless, both modelling methods require hydrological and chemical parameters (recharge flow rate, outflows, volume of mine voids, mass of solids, kinetic constants of the dissolution-precipitation reactions), which are commonly not available for a mine and therefore call for calibration data.  相似文献   

17.
Laboratory tests of photocatalytic air purifiers are usually performed with a single pollutant, in the parts per million by volume domain and at airflow rates < or =0.1 m3/hr. Clearly, it is necessary to probe photocatalytic materials and apparatuses under real conditions or conditions closely mimicking reality. Photocatalytic prototypes were placed in an ordinary room. To collect hydrocarbons over a shorter period (15 min) than with adsorbent-containing cartridges, solid-phase microextraction (SPME) was used. Typically, concentrations in substituted benzene hydrocarbons and tetrachloroethene were decreased to 20-35% of initial values; toluene and m- + p-xylene concentrations dropped to 2-6 parts per billion by volume, and o-xylene and benzene concentrations were still lower. In the absence of appropriate, commercialized SPME fibers, carbonyl compounds (both formed and destroyed by photocatalysis) were extracted using cartridges containing 2,4- dinitrophenylhydrazine-coated silica. The concentration ranges (in parts per billion by volume) were shifted to higher values in treated air: from 9-15.5 to 12.5-18 for methanal, from 1.5-3 to 8-11.5 for ethanal, and from 4.5-19 to 8-26.5 for propanone with the prototype used; these unprecedented results do not exclude using photocatalysis to treat air, but they illustrate that improvement is needed. Because these tests are time-consuming, preliminary tests are useful; results obtained with a 225-L closed-loop, airtight, photocatalytic reactor with an external turbine enabling the ambient air inside the reactor to be circulated through the purifier device at 15-450 m3/hr flow rates are reported.  相似文献   

18.
Jansson S  Fick J  Marklund S 《Chemosphere》2008,72(8):1138-1144
Non- to octa-chlorinated naphthalenes (PCNs) were analyzed in flue gas samples collected simultaneously at three different temperatures (450 degrees C, 300 degrees C and 200 degrees C, respectively) in the post-combustion zone during waste combustion experiments using a laboratory-scale fluidized-bed reactor. PCN homologue profiles in all samples were dominated by the lower chlorinated homologues (mono- to triCN), with successive reductions in abundance with each additional degree of chlorination. The isomer distribution patterns reflected ortho-directionality behavior of the first chlorine substituent, and the beta-positions, i.e. the 2,3,6,7-substitution sites, seemed to be favored for chlorination. Injection of naphthalene into the post-combustion zone resulted in increased PCN levels at 200 degrees C, demonstrating the occurrence of chlorination reactions in the post-combustion zone. However, the increases were restricted to the least-chlorinated homologue (monoCN), probably because there was insufficient residence time for further chlorination. In addition, an episode of poor combustion (manifested by high CO levels) was accompanied by extensive formation of 1,8-diCN, 1,2,3- and 1,2,8-triCN; congeners with substitution patterns that are not thermodynamically favorable. These are believed to be products of PAH breakdown reactions and/or chlorophenol condensation. Overall, PCN formation is likely to occur via more than one pathway, including chlorination of naphthalene that is already present, de novo synthesis from PAHs and, possibly, chlorophenol condensation.  相似文献   

19.
Tracer tests provide highly valuable information about the transport properties of saturated rocks which is essential to the characterization of a potential radioactive waste repository site. In the frame of El Berrocal project, a set of tracer tests was performed in a complex geometry of inclined boreholes, combined with highly fractured transmissive zones. The aims of the tracer test programme were to gain experience, knowledge and insight into field transport experiments. To achieve this a detailed programme of new instrumentation design, site characterization and laboratory tasks was developed. For field monitoring a new electronic system was developed. The system is able to measure up to 256 parameters per borehole, with surface equipment to control pumping rates and physical and chemical parameters at both injection and extraction boreholes. The experiments progressed from single borehole dilution tests under both natural flow and forced gradient conditions to convergent flow tracer tests. Dilution tests helped to discriminate the most suitable borehole sections at which to inject tracers. The tracers were selected by the results of the laboratory programme. Uranine (fluorescein), DTPA-gadolinium (diethylenetriaminopentacetic acid, gadolinium (III)), and deuterium were injected simultaneously in one borehole section and recovered at another borehole 20 m away, pumping at a flowrate of 0.1 1 min−1. First results showed a thickness porosity of 1.2 × 10−3 m and a longitudinal dispersivity of 17.0 m using uranine data acquired over a period of 4 d, at which point the recovery concentration had reached a maximum. However, gadolinium and deuterium appeared to travel faster, arriving at peak values after only 2 d of injection.  相似文献   

20.
Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号