首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 200 毫秒
1.
pH值对SBR单级好氧生物除磷的影响   总被引:5,自引:2,他引:3       下载免费PDF全文
在2个序批式反应器(R1、R2)中,以合成废水为对象,研究了不同pH值(R1:pH 8±0.2; R2:pH 7±0.2)对单级好氧生物除磷的影响;并通过比较周期中主要储能物质的变化,探讨了产生不同除磷效果的原因.结果表明,R1与R2均具有较高除磷性能, R1与R2中的平均去除率分别为94.9%,83.5%,pH值对SBR单级好氧生物除磷有一定的影响.导致R1具有较高除磷性能的原因是其对聚磷的依赖程度更大.好氧段R1糖原积累量低于R2(R1为1.42mmol/g, R2为1.55mmol/g),但降解量却高于R2(分别为1.41,1.19mmol/g);静置期,R1中糖原无明显变化,R2中则观察到明显的糖原降解.R1与R2均有明显的释磷现象, R1释磷量高于R2(释磷量分别为9.65,7.33mg/L).整个周期中,R1中PHA 无明显变化,而R2中则在好氧段有少量减少,静置期有少量上升.  相似文献   

2.
2种典型基质作为碳源对单级好氧生物除磷影响的研究   总被引:3,自引:1,他引:2  
以合成废水为研究对象,比较了SBR单级好氧工艺以2种典型基质(R1:葡萄糖;R2:乙酸钠)作为碳源时的除磷效果,试验运行方式为瞬时进水→曝气(4 h)→沉淀、静置(8 h)→瞬时出水.结果表明,在稳定运行中R1磷的去除效率明显高于R2.R1、R2中好氧曝气段反应器中单位混合液挥发性悬浮固体(MLVSS)的总磷(TP)去除量约为7.2~7.7、3.8~4.6 mg.g-1,静置期单位MLVSS的TP释放量分别为3.6~3.8、2.7~3.1 mg.g-1.R1反应过程中微生物体内储能物质多β羟基烷酸盐(PHA)含量并没有明显的变化,但糖原质浓度在曝气30 min时增长到最大值,曝气结束时微生物体内糖原质水平消耗到微生物的原始水平;R2中PHA和糖原质在曝气约45 min时均观察到最大的积累量.本研究试验现象表明在R1反应器中糖原作为其好氧段主要的能源物质为其生物代谢提供能量,而在R2反应器中其主要的能量来源于PHA的分解辅以糖原的水解,这也表明在单级好氧生物除磷过程中糖原质能代替传统厌氧/好氧(A/O)工艺中的PHA成为微生物的能源物质,且由于R1比R2有更多的糖原质的积累,使得R1中磷的去除效率高于R2.  相似文献   

3.
溶解氧对好氧/延长闲置SBR除磷性能的影响   总被引:2,自引:0,他引:2  
以合成废水为研究对象,乙酸钠为外加碳源,考察不同溶解氧(DO)浓度下好氧/延长闲置(O/EI)序批式反应器的除磷效果,并通过分析典型周期内磷元素及微生物体内各储能物质的变化,探究DO浓度对O/EI工艺除磷性能的影响机制.结果表明,低DO浓度(1 mg·L-1)条件下,O/EI系统具有良好的除磷效果,除磷率高达96%,单位污泥除磷量为5.02 mg·g-1;而当DO浓度较高(4 mg·L-1)时,反应器内磷的去除率降至50%,单位污泥除磷量仅2.81 mg·g-1.研究表明,在DO浓度为1 mg·L-1时,微生物能合成较多聚羟基脂肪酸酯(PHAs),糖原的合成及利用较少,系统好氧吸磷量远高于其他反应器,并在闲置期释放出更多聚磷酸盐.可见,DO可通过影响微生物体内PHAs和糖原的合成及转化,闲置期释磷,好氧前期释磷及好氧吸磷,进而影响系统的除磷性能.  相似文献   

4.
杨帆  王冬波  李小明  杨麒  邓莹  罗琨  邹正军  曾恬静  邓嫔 《环境科学》2011,32(11):3379-3385
以A/O工艺和单级好氧除磷工艺为研究对象,利用生活污水中存在最广泛的乙酸钠作为单一碳源,对比研究了2组SBR(A/O工艺,SBR1;单级好氧除磷工艺,SBR2)的除磷效果.连续进行3个月的研究表明,2组SBR在稳定除磷阶段的除磷率和单位污泥的除磷水平分别为91.72%和3.23 mg.g-1(SBR1)与71.70%和2.91 mg.g-1(SBR2).进一步研究还发现:在SBR1中PHA合成的同时伴随着糖原质的消耗,而在SBR2中PHA合成的同时伴随糖原质的积累,这意味着单级好氧除磷工艺中PHA的合成无需糖原质的参与;在静置阶段,2组SBR都表现出了很明显的释磷现象,但SBR2具有更高的释磷水平(释磷量分别为2.6 mg.L-1和13.28 mg.L-1).SBR1和SBR2体现出不同的除磷能力的原因很有可能是2组SBR的微生物在代谢过程中储能物质在消耗和存贮的循环过程中存在差异.  相似文献   

5.
好氧颗粒污泥处理制糖工业废水厌氧出水的除磷特性研究   总被引:2,自引:1,他引:1  
制糖工业废水经厌氧生物处理后,COD大幅下降,但是出水中N、P含量仍然较高,严重破坏水体生态平衡.利用好氧颗粒污泥对制糖工业废水的厌氧出水进行脱氮除磷处理,讨论了其除磷过程.经复合底物(乙酸盐、丙酸盐、丁酸盐)培养的好氧颗粒污泥直径1.7 mm,SVI为38.43 mL.g-1,TP去除率达90.9%,出水磷含量仅为1.3 mg.L-1,单位COD释磷率为0.571,厌氧条件下磷的释放速率达到5.73 mg.(g.h)-1,好氧颗粒污泥表现出较好的沉淀性能和较高的除磷活性.由于底物中丙酸盐、丁酸盐含量增加,使得聚磷菌在反硝化过程中NO3--N的利用率增加,即消耗单位质量的NO3--N可以吸收更多的磷.好氧颗粒污泥及其胞外聚合物中P元素的含量与其中Mg、Ca、Fe元素的含量表现出很高的相关性,胞外聚合物对P的吸附使得体系除磷能力进一步增强.通过对污泥反硝化除磷的研究发现,反硝化聚磷菌占总聚磷菌的61.9%,其吸磷量与消耗硝酸盐的比值[m(P)/m(NO3--N)]为1.14.  相似文献   

6.
在4个序批式反应器(SBR)R1、R2、R3和R4中,以静置段代替传统厌氧段,采用后置缺氧,考察进水氨氮浓度分别为20,30,40,50mg/L对静置/好氧/缺氧SBR脱氮除磷性能的影响.结果表明,R1、R2、R3和R4长期运行中磷去除率分别为82.3%、92.8%、92.6%和89.1%,总氮(TN)去除率分别为97.2%、88.6%、84.5%和72.6%.静置段省却搅拌,但仍起厌氧段作用,仍可实现生物强化除磷.4个反应器好氧段均发生同步硝化-反硝化(SND),分别贡献14.7%、16.6%、17.8%和14.8%的进水后TN量,且后置缺氧段利用糖原驱动反硝化,脱氮效果较好,出水TN分别为0.57,4.43,6.61,13.70mg/L.研究表明,进水氨氮浓度可影响静置释磷、好氧摄磷、反硝化除磷.静置段代替厌氧段的后置缺氧工艺可取得较好脱氮除磷效果,且节约成本,简化工艺.  相似文献   

7.
甲醇和乙醇对SBR单级好氧生物除磷的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
分别以甲醇(SBR1#)和乙醇(SBR2#)作为碳源,研究了其对单级好氧生物除磷的影响.结果表明,稳定运行条件下,SBR1#磷的平均去除量为6.56mg/L,平均去除率为52.63%.SBR2#中磷的平均去除量为11.22mg/L,去除率为90.34%. SBR1#和SBR2#一个周期运行中好氧吸磷速率分别为1.62mg/(g×h)(以PO43--P计)和5.31mg/(g×h)(以PO43--P计),其中SBR2#出水磷的浓度低于检出限,SBR2#的储能物质总累积量比SBR1#多.相比之下,乙醇是作为除磷碳源效果较好.静置期,由于SBR2#中聚磷菌生物活性较SBR1#高,代谢旺盛,其释磷量高于SBR1#.  相似文献   

8.
SBR不同进水中反硝化除磷颗粒污泥的培养   总被引:1,自引:0,他引:1  
分别以人工配水、加Ca~(2+)人工配水和实际生活污水为进水水源,在A/O/A运行模式的3套SBR反应器(R1、R2和R3)中培养反硝化除磷颗粒污泥,研究了其生化特性和启动过程的除污性能,分析了反硝化除磷能力,最后对颗粒化机理进行了探讨,重点考察了反硝化除磷颗粒污泥启动过程中对COD、NH_4~+-N、TN和TP的去除情况.结果表明,R1~R3均在30 d内成功得到反硝化除磷颗粒污泥,颗粒污泥平均粒径大于600μm,比重和比耗氧速率较大,含水率较低;培养过程中出水COD平均值低于40 mg·L~(-1),出水TN、NH+4-N及TP平均浓度低于1 mg·L~(-1);系统稳定后一个典型周期内试验表明,COD、NH_4~+-N、TN和TP的去除效果良好,对COD、NH+4-N、TN及TP的去除率可达90%以上;R1~R3中最大比释磷速率分别达14.34、8.32和2.32 mg·g·h~(-1)(以每g MLVSS每小时释放的P量(mg)计),R1~R2中最大比吸磷速率分别达14.13和2.34mg·g·h~(-1)(以每g MLVSS每小时吸收的P量(mg)计);试验结果表明,Ca~(2+)对颗粒化有促进作用.  相似文献   

9.
以合成废水为研究对象,以丙酸盐为单一外加碳源,通过比较进水中不同Zn2+浓度(0,1,5,10,20mg/L)下单级好氧模式下序批式反应器(SBR)的除磷效果,考察进水Zn2+浓度对单级好氧SBR生物除磷性能的影响,并通过分析各反应器中典型周期内磷及微生物体内储能物质的变化,探究Zn2+对单级好氧SBR生物除磷性能的影响机理.当进水Zn2+浓度为0和1mg/L时,除磷率分别高达96.84%和97.90%.当进水Zn2+浓度为5,10,20mg/L时,系统除磷率分别为89.32%,76.43%和57.29%,说明较高浓度Zn2+对单级好氧SBR生物除磷有抑制作用.结果表明,较高浓度Zn2+可抑制COD的降解,微生物体内聚羟基脂肪酸酯好氧合成及磷酸盐激酶活性,并促进GAOs的代谢,使聚磷合成和水解量减少,从而降低系统的除磷性能.  相似文献   

10.
以乙酸钠和丙酸钠1:2混合作为碳源,进水COD浓度分别为200,400,600,800mg/L,研究混合碳源浓度对单级好氧生物脱氮除磷的影响,并通过比较微生物体内储能物质的变化,探讨混合碳源浓度对生物脱氮除磷性能影响的机理.结果表明,当进水磷和氨氮浓度分别为12,30mg/L时,随着进水COD由200增加至800mg/L,磷去除率由39.9%提升至86.4%(氮去除率从13.5%提升至96.4%).进水COD为400mg/L时单位挥发性悬浮固体(VSS)的磷和氮去除量达到最高[分别为(4.31±0.08)和(6.15±0.22)mg/g].当进水COD由200增加至400mg/L时生物除磷活性增强,而COD继续增加会使污泥沉降性能变差,脱氮除磷生物活性降低.好氧吸磷和同步硝化反硝化主要由微生物体内储能物质多β羟基烷酸盐(PHA)驱动,当进水COD为400mg/L时单位VSS消耗的PHA最多.混合碳源浓度通过影响碳源的好氧代谢,使微生物体内储能物质的积累/转化量不同,进而影响系统的脱氮除磷性能.  相似文献   

11.
采用厌氧/缺氧/好氧和生物接触氧化反应器(A2/O-BCO)组成的反硝化除磷系统处理模拟生活污水,通过调节进水乙酸钠、丙酸钠的配比(乙酸钠:丙酸钠分别为1:0,2:1,1:1,1:2和0:1),考察了系统对有机物的去除以及同步脱氮除磷的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明:乙酸钠丙酸钠配比对有机物和NH4+-N的去除影响较小,对厌氧段有机物的消耗和TN的去除率以及磷的释放和吸收影响较为明显;TP去除率仅为50.3%~56.8%,需进一步优化系统的运行参数.当乙酸钠:丙酸钠=1:1时,厌氧段有机物消耗量最大,占有机物流入量的61.2%,厌氧释磷量最大(23.2mg/L)且缺氧吸磷率最高(71.4%),而TN的去除效果则随丙酸钠含量的增加而增加.高通量测序结果表明:A2/O反应器中微生物多样性降低,混合碳源污泥中微生物多样性比单一碳源更丰富;驯化后的污泥中绿弯菌(Chloroflexi)和螺旋菌(Saccharibacteria)减少,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)增加.BCO反应器中Nitrospira和Nitrosomonas总占比为2.1%~31.4%,且抑制亚硝酸盐氧化菌(NOB)的活性,有利于短程硝化的实现.  相似文献   

12.
接种厌氧/缺氧/好氧-生物接触氧化(AAO-BCO)系统的反硝化除磷污泥,采用厌氧/缺氧/好氧-序批式(AAO-SBR)系统,重点考察了乙酸盐和丙酸盐配比(1:0,2:1,1:1,1:2和0:1)对反硝化除磷效率的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明,5种工况下,AAO-SBR系统均具有较高的有机物去除和反硝化除磷能力.而当乙酸钠/丙酸钠=1:0时,厌氧阶段在高效利用COD(87.63%)的同时完成聚-β-羟基烷酸(PHAs)的合成(174mgCOD/gMLSS),释磷量高达31.22mg/L;缺氧阶段PO43--P的去除(74%)伴随着NO3--N反硝化(90%),PHAs利用率为72.4%,实现了氮磷的高效去除.高通量测序结果表明:不同碳源配比影响了微生物菌群的丰富度和多样性,其中变形菌门(Proteobacteria,31%~76%)、绿弯菌门(Chloroflexi,1%~26%)、拟杆菌门(Bacteroidetes,2%~31%)等占据绝大比例,而乙酸钠、丙酸钠共存时,微生物的多样性较好.当乙酸钠为单一碳源时,系统中聚磷菌(PAOs,21.364%)在与聚糖菌(GAOs,2.317%)的竞争中占绝对优势.  相似文献   

13.
采用厌氧/缺氧/好氧-生物接触氧化(A2/O - BCO)工艺处理低碳氮(C/N)比污水, 考察单因素碳源(阶段Ⅰ: 乙酸钠; 阶段Ⅱ: 乙酸钠+丙酸钠; 阶段Ⅲ: 丙酸钠)对有机物去除以及同步脱氮除磷的影响, 并重点探究乙酸钠、丙酸钠混合碳源条件下内碳源(PHA、Gly)的转化利用以及反硝化除磷(DPR)机理, 同时通过高通量测序对比了不同阶段微生物菌群结构的演变规律.结果表明: 混合碳源提高了有机物、氮、磷的同步去除效率, 厌氧段内碳源转化量为226mg/h, 释磷量高达30.58mg/L, DPR效率稳定在90%以上; 批次试验表明反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的比例为72.42%, 基本实现了DPAOs的富集; 高通量测序结果表明混合碳源更有利于形成独特的OTUs菌群, PAOs(包括AccumulibacterAcinetobacter)和DPAOs (包括DechloromonasPseudomonas)总量高达29.13%(> 16.18%(阶段Ⅲ) > 14.34%(阶段Ⅰ)), 有效促进了碳源的高效利用以及反硝化除磷效率; BCO反应器中氨氧化菌(AOB, 包括NitrosomonasNitrosomonadaceae)和亚硝酸盐氧化菌(NOB, 以Nitrospira为主)总量从3.89%(N1)增加到23.09%(N2)、37.23%(N3), 为反硝化除磷提供充足的电子受体; 此外, 建立了基于碳源高效利用的运行调控策略, 以期为A2/O - BCO工艺的推广应用提供理论参考.  相似文献   

14.
为阐明厌氧生物处理系统中pH降低对丙酸降解的影响,考察了弱酸性条件下丙酸富集培养物的降解特征.在污泥接种量为0.22g MLVSS/L,初始丙酸浓度为1000mg/L条件下,对照组(pH7.0)的丙酸能够被该富集培养物快速降解,在接种第6d时,丙酸去除率达到了98.5%.当pH从7.0分别降低至6.5和6.0时,丙酸降解速度立即下降.但经过2~3d的适应后,丙酸降解速率恢复到对照的水平,并分别在培养至第8d和9d时其去除率达到了97%以上.当pH为5.5时,丙酸降解被完全抑制.在整个实验过程中,均未检测到氢气,而乙酸也只有在培养初期有过短暂的积累.该结果表明,在该丙酸富集培养物中,产甲烷菌对弱酸性环境具有更好的耐受性和适应性.  相似文献   

15.
强化生物除磷系统中胞外聚合物的特性   总被引:3,自引:0,他引:3       下载免费PDF全文
胞外聚合物(EPS)在生物除磷过程中具有蓄磷能力,为进一步明确生物除磷系统中的EPS特性,以不具有明显除磷能力的全程好氧活性污泥系统(R1)的EPS作为对比,考察了具有良好除磷效果的厌氧/好氧交替下的强化生物除磷系统(R2)中EPS的理化特性.结果表明,相对于R1中的EPS主成分在一个周期内的不固定,R2中的蛋白质含量一直明显高于多糖含量;两者的主要荧光物质均为类蛋白质和类富里酸,但在好氧末期R2中类蛋白质的荧光强度高于R1; R1的EPS中Ca2+> Mg2+,而在R2中, Mg2+>Ca2+,同时R1中的Ca2+含量平均值为8.67mg/gMLSS,大于R2中Ca2+的平均值2.40mg/gMLSS;在好氧末期,R2中的TP为21.65mg/gMLSS,明显高于R1中的TP含量(13.83mg/g-MLSS).此外,R1和R2的zeta电位平均值分别为-36mV和-25mV.由此可见, EBPR系统中的EPS具有与全程好氧活性污泥中的EPS不同的特征.  相似文献   

16.
采用SBR工艺培养生物强化除磷活性污泥,通过厌氧批式试验对反应器中的高效除磷好氧颗粒污泥进行厌氧乙酸吸收动力学研究。结果表明:聚磷菌对乙酸吸收速率不受乙酸浓度影响,但受胞内聚磷浓度影响。当胞内聚磷浓度低于60mg—P/g—VSS时,乙酸吸收速率与聚磷浓度呈Monod关系。进而求出了聚磷菌吸收乙酸的动力学方程,其中最大乙酸吸收速率为3mg—HAe/g—VSS·min,胞内聚磷的饱和系数为20mg—P/g—Vss。另外,在pH为中性条件下,每吸收1mg乙酸,聚磷菌释放约0.5mg磷。  相似文献   

17.
富含聚磷菌的好氧颗粒污泥的培养与特性   总被引:7,自引:4,他引:3  
由阳  彭轶  袁志国  李夕耀  彭永臻 《环境科学》2008,29(8):2242-2248
以实验室SBR反应器为载体.接种普通活性污泥,探讨了富集聚磷菌和培养好氧颗粒污泥同时实现的可行性,以交替负荷的方法培养2个月后,富含聚磷菌的好氧颗粒污泥形成.颗粒形成后逐步改变碳源种类以提供选择压.淘汰系统中存在的聚糖菌.结果表明,与丙酸相比,乙酸更适合富含聚磷菌的好氧颗粒污泥的生存,以乙酸为碳源,系统吸放磷量更多.颗粒平均粒径更大(2 mm),颗粒的性能指标(沉降速度、含水率、呼吸速率、密度、完整度系数)部相对优于以丙酸为碳源时的情况.以工艺检测和分子生物学手段双重检测颗粒形成过程,发现颗粒吸放磷能力的逐渐提高伴随着聚磷菌占微生物总量的比例越来越大.富集培养结束时聚磷菌占总菌的70%左右.实验证明,富含聚磷菌的好氧颗粒污泥具有优异的污染物去除能力,其对COD去除率可达95%以上,对磷的去除可达100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号