首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Surface barriers for waste disposal sites should preventwaste water and gas emission into the environment. It isnecessary to assess their proper operation by monitoring thewater regime of the containment. A set of three new water contentmeasuring devices has been developed that provide an economicalsolution for monitoring the moisture distribution and waterdynamic. They will give an early warning service if the barriersystem is at risk of being damaged. The cryo soil moisture sensor`LUMBRICUS' is an in situ self-calibrating absolute water contentmeasuring device. It measures moisture profiles at spot locationsdown to 2.5 m depth with an accuracy of better than 1.5% and adepth resolution of 0.03 m. The sensor inherently measuresdensity changes and initial cracks of shrinking materials likeclay minerals. The large area soil moisture sensor `TAUPE' is amoisture sensitive electric cable network to be buried in themineral barrier material of the cover. A report will be givenwith results and experiences on an exemplary installation at theWaste Disposal Facility Karlsruhe-West. 800 m2 of the barrierconstruction have been continuously monitored since December1997. Volumetric water content differences of 1.5% have beendetected and localised within 4 m. This device is alreadyinstalled in two other waste disposal sites. A modified `TAUPE'was constructed for the control of tunnels and river dams aswell. Thin sheet moisture sensor `FORMI' is specifically designedfor moisture measurements in liners like bentonite, textile andplastic. Due to its flexibility it follows the curvature of theliner. The sensor measures independently from neighbouringmaterials and can be matched to a wide range of differentthickness of the material. The sensors are patented in several countries.  相似文献   

2.
Use of specific plant species in remediation of heavy metal-contaminated soil and water was a promising eco-friendly technology. The present study indicated the possibilities of phytoremediation of metal-contaminated (namely Ca, Cr, Mn, Fe, Cu, Zn, and Pb) soil by using plant species important for floriculture of East Calcutta Wetlands, a Ramsar site at the eastern fringe of Calcutta city. Plant species like sunflower (Helianthus annuus), marigold (Tagetes patula), and cock's comb (Celocia cristata) grew on soil contaminated by industrial sludge and irrigated regularly with wastewater accumulated different metals in different plant parts in varied concentrations. Pot culture study in the laboratory setup was also done to ascertain the efficiency of these plants for ameliorating contaminated soil. It was found that general accumulation patterns of metals concerned in different plant parts were root > leaf > stem > flower. This work indicated the importance of cultivation of economically important, non-edible, ornamental plant species as an alternative cost-effective practice to remediate heavily contaminated farmlands of East Calcutta Wetlands.  相似文献   

3.
Soil water content is a key parameter for representing water dynamics in soils. Its prediction is fundamental for different practical applications, such as identifying shallow landslides triggering. Support vector machine (SVM) is a machine learning technique, which can be used to predict the temporal trend of a quantity since training from past data. SVM was applied to a test slope of Oltrepò Pavese (northern Italy), where meteorological parameters coupled with soil water content at different depths (0.2, 0.4, 0.6, 1.0, 1.2, 1.4 m) were measured. Two SVM models were developed for water content assessment: (i) model 1, considering rainfall amount, air temperature, air humidity, net solar radiation, and wind speed; (ii) model 2, considering the same predictors of model 1 together with antecedent condition parameters (cumulated rainfall of 7, 30, and 60 days; mean air temperature of 7, 30, and 60 days). SVM model 2 showed significantly higher satisfactory results than model 1, for both training and test phases and for all the considered soil levels. SVM models trends were implemented in a methodology of slope safety factor assessment. For a real event occurred in the tested slope, the triggering time was correctly predicted using data estimated by SVM model based on antecedent meteorological conditions. This confirms the necessity of including these predictors for building a SVM technique able to estimate correctly soil moisture dynamics in time. The results of this paper show a promising potential application of the SVM methodologies for modeling soil moisture required in slope stability analysis.  相似文献   

4.
A mathematical model is developed for metal ions uptake by aquatic plants. The model is based on a mechanism which assumes that the complex biological substances present in the plant react with the metal ions to form complexes of these ions at the solution–plant interface, and then the metal complexes diffuse through a membrane towards the bulk phase of the plant because of the concentration gradients present in the membrane. The model predicts the decreasing capacity of the plants for metal ions uptake as the contact time between the solution and the plant is increased. Experiments are conducted in the laboratory for the removal of chromium, copper, iron, nickel, lead and zinc by measuring metal ions uptake by two aquatic plants, Salvinia and Spirodela, in the solution of these metal ions of concentration ranging from 1 to 8 ppm. After estimating the parameters of the model, it is used for predicting the metal ions concentration in the solution as a function of time and the metal ions concentration inside the plants after 14 days of contact time. The comparison of the model predictions with the experimental results shows excellent agreement. The above model may be used for design and analysis of an aquatic‐plant‐based waste water treatment system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The concept of time stability has been widely used in the design and assessment of monitoring networks of soil moisture, as well as in hydrological studies, because it is as a technique that allows identifying of particular locations having the property of representing mean values of soil moisture in the field. In this work, we assess the effect of time stability calculations as new information is added and how time stability calculations are affected at shorter periods, subsampled from the original time series, containing different amounts of precipitation. In doing so, we defined two experiments to explore the time stability behavior. The first experiment sequentially adds new data to the previous time series to investigate the long-term influence of new data in the results. The second experiment applies a windowing approach, taking sequential subsamples from the entire time series to investigate the influence of short-term changes associated with the precipitation in each window. Our results from an operating network (seven monitoring points equipped with four sensors each in a 2-ha blueberry field) show that as information is added to the time series, there are changes in the location of the most stable point (MSP), and that taking the moving 21-day windows, it is clear that most of the variability of soil water content changes is associated with both the amount and intensity of rainfall. The changes of the MSP over each window depend on the amount of water entering the soil and the previous state of the soil water content. For our case study, the upper strata are proxies for hourly to daily changes in soil water content, while the deeper strata are proxies for medium-range stored water. Thus, different locations and depths are representative of processes at different time scales. This situation must be taken into account when water management depends on soil water content values from fixed locations.  相似文献   

6.
黔西北土法炼锌矿区重金属污染现状及其环境影响评价   总被引:4,自引:1,他引:3  
在对黔西北土法炼锌四个矿区周围的土壤和植物(蔬菜和作物等)进行全面调查的基础上,对土壤和植物重金属(Zn、Cd、Pb、Cu和As)污染现状进行了监测与初步评价.结果表明,四个土法炼锌矿区除野马川的土壤属于中度污染外,其余全部处于严重污染状态,并且Cd是每个矿区的主要污染元素;土法炼锌矿区周围的蔬菜已全部受到严重污染,综合污染指数在10.83~40.67之间,属于重度污染,蔬菜污染主要以Cd为主,超过国家食品卫生标准54倍;矿区周围其他植物如土豆、玉米和绿肥等中的重金属亦严重超标,主要以Pb污染为主,超过国家食品卫生标准366.75倍.说明矿区土壤中种植作物的生长及食用安全已经受到重金属污染的严重影响,对居民健康构成潜在威胁.  相似文献   

7.
李根  李文 《中国环境监测》2022,38(6):183-195
20世纪60年代以来,环境磁学以快速、灵敏、经济、无破坏性和信息量大等特点被广泛应用到环境污染研究中。笔者介绍了环境磁学应用于重金属污染监测的基本原理和优势,系统综述了其在大气,水体(湖泊、河流和海岸等)和土壤等环境重金属污染监测中的主要成果和最新进展,包括磁学参数可作为重金属污染物质代用指标,以及环境磁学在重金属污染分布特点和污染程度鉴定、重金属污染历史重建、重金属污染物运移追踪等方面的应用。提出了重金属污染磁性诊断研究还需要解决的问题,包括磁学参数多解性,其他环境过程(动力分选、吸附解吸和早期成岩等)的干扰和影响,磁性矿物与重金属物质赋存关系及多学科交叉研究等。  相似文献   

8.
This paper is based on long-term monitoring data for soil water, salt content, and groundwater characteristics taken from shelterbelts where there has been no irrigation for at least 5 years. This study investigated the distribution characteristics of soil water and salt content in soils with different textures. The relationships between soil moisture, soil salinity, and groundwater level were analyzed using 3 years of monitoring data from a typical oasis located in an extremely arid area in northwest China. The results showed that (1) the variation trend in soil moisture with soil depth in the shelterbelts varied depending on soil texture. The soil moisture was lower in sandy and loamy shelterbelts and higher in clay shelterbelts. (2) Salinity was higher (about 3.0 mS cm?1) in clay shelterbelts and lower (about 0.8 mS cm?1) in sandy shelterbelts. (3) There was a negative correlation between soil moisture in the shelterbelts and groundwater level. Soil moisture decreased gradually as the depth of groundwater table declined. (4) There was a positive correlation between soil salinity in the shelterbelts and the depth of groundwater table. Salinity increased gradually as groundwater levels declined.  相似文献   

9.
The implications of metal contamination of agricultural soils due to long term irrigation with treated industrial wastewater and their subsequent accumulation in the vegetables/crops growing on such soils has been assessed in an area of industrial complex, Jajmau, Kanpur (India). Physico-chemical properties of the soil were also studied. The soil and vegetables/crops were sampled from an area of 2100 acre agricultural land and analyzed for physico-chemical properties and metal accumulation in different parts of the plants. The comparison of the data of physico-chemical properties of control and contaminated soil showed that salinity, electrical conductivity, available phosphorous, sodium and potassium content (both water soluble and exchangeable) were found high in contaminated soil. The analysis of plant available metal content in the soil showed the highest level of Fe, which ranged from 529.02 to 2615 μg g−1 dw and lowest level of Ni (3.12 to 10.51 μg g−1 dw). The analysis of the results revealed that accumulation of toxic metal Cr in leafy vegetables was found more than fruit bearing vegetables/crops. Thus, it is recommended that the leafy vegetables are unsuitable to grow in such contaminated sites. It is important to note that toxic metal, Ni was not detected in all the plants. The edible part of the vegetables (under ground) such as, garlic (19.27 μg g−1 dw), potato (11.81 μg g−1 dw) and turmeric (20.86 μg g−1 dw) has accumulated lowest level of toxic metal, Cr than leafy and fruit bearing vegetables. In some fruit part of vegetables such as, bitter gourd, egg plant, jack tree, maize and okra, the accumulation of Cr was not detected and may be grown in this area.  相似文献   

10.
In order to assess the chemical properties of groundwater and soil in ophiolitic zone of Firuzabad, in east of Shahrood, Iran, 10 soil samples with regard to sensitive points (vicinity to mine, ophiolitic rocks, and villages) and 10 groundwater samples including nine samples from springs, and also one sample from a well in a village of the study area were taken. These samples were analyzed in laboratories using inductively coupled plasma method. The soil samples were also evaluated for grain size. The obtained results show that most of heavy and major elements were exceeding the permissible levels in soil and water samples in the study area. On the subject of soil quality, concentrations of elements Cr, Mn, Fe, Ca, Mg, Ca, Ni, and Zn are above permissible levels. Enrichment factor and index of geoaccumulation have been calculated for heavy and major elements of all soil samples. According to the obtained results, it may be argued that soil samples are contaminated in relation to the above-mentioned indices. Comparing the concentrations of elements with results of grain size analysis illustrates that the concentrations of Cr, Ni, Fe, Mg, and Co are positively correlated with sand fraction and the concentrations of Al, P, Mn, and Pb are directly proportional with clay fraction in soil samples. The study on water contamination suggests that concentrations of elements Cr, Ni, and Mg in groundwater samples of the study area are above the permissible levels. Some indices like metal index and heavy metal pollution index show that most of the water samples include heavy metal contamination.  相似文献   

11.
The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coalmines and six thermal power stations that generate about 7,500 MW (about 10% of India’s installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.  相似文献   

12.
We studied the suitability of Panchgavya (five products of cow), new organic amendment, application on seed germination, plant growth, and soil health. After characterization, Panchgavya was mixed with water to form different concentration and was tested for seed germination, germination index, and root and shoot growth of different seedlings. Four percent solution of Panchgavya was applied to different plants to test its efficacy. Panchgavya and other two organic amendments were incorporated in soil to test the change of soil chemical and microbiological parameters. Panchgavya contained higher nutrients as compared to farm yard manure (FYM) and vermicompost. Its application on different seeds has positively influenced germination percentage, germination index, root and shoot length, and fresh and dry weight of the seedling. Water-soluble macronutrients including pH and metal were positively and negatively correlated with the growth parameters, respectively. Four percent solution of Panchgavya application on some plants showed superiority in terms of plant height and chlorophyll content. Panchgavya-applied soil had higher values of macro and micronutrients (zinc, copper, and manganese), microbial activity as compared to FYM, and vermicompost applied soils. Application of Panchgavya can be gainfully used as an alternative organic supplement in agriculture.  相似文献   

13.
Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.  相似文献   

14.
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5–3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.  相似文献   

15.
The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.  相似文献   

16.
The roots of Populus euphratica, a plant that grows in the lower reaches of the Tarim River, Northwest China, exhibit a significant level of hydraulic redistribution; however, quantitative assessments of the water-sharing process and its ecological effects are limited. This study was designed to obtain such data using an assessment model based on field observation parameters, including soil water content (soil water potential), root distribution, and stable isotope δ18O values of soil and plant samples during the entire growing season. The results showed that hydraulic redistribution in P. euphratica can be detected in 0–120 cm soil layers, with the amount of hydraulically redistributed water (HRW) in the soil found at different depths as follows: 60–80?>?40–60?>?20–40?>?0–20?>?80–100?>?100–120 cm. The variations in HRW in soil layers can be partly attributed to the vertical distribution of roots. The denser roots found at greater depths positively influenced the amount of redistributed water in lower soil layers. During the growing season, the amount of HRW reached a daily average of 0.27 mm, which allowed increased transpiration and provided an adequate water supply to herbs. Based on the stable isotope (δ18O) data, the amount of HRW provided by the roots of P. euphratica could meet 22–41 % of its water demand.  相似文献   

17.
Scirpus littoralis is a wetland plant commonly found in Yamuna flood plains of Delhi, India. The ability of Scirpus littoralis to take up and translocate five metals- Mn, Ni, Cu, Zn and Pb from fly ash dosed and metal spiked soils were studied under waterlogged and field conditions for 90 days. Scirpus littoralis accumulated Mn, Ni, Cu, Zn and Pb upto a maximum of 494.92, 56.37, 144.98, 207.95 and 93.08 ppm dry wt., respectively in below ground organs (BO) in 90 days time. The metal content ratios BO/soil (B/S) were higher than shoot/soil ratios (T/S) for all the metals, the highest being for Ni. Metal ratios BO/water (B/W) were also higher than shoot/water (T/W) ratios but the B/W ratio was maximum for Zn. The changes in nutrient status (N, P) in soil water and plants were also studied at interval of 30 days. The Pearson's correlation between metal uptake and N, P uptake were calculated. All the metals except Ni showed negative correlation with nitrogen but they were all non-significant. However, P uptake showed positive correlations with all the metals and all were significant at 1% confidence limit.  相似文献   

18.
Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010–2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R 2), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R 2, MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.  相似文献   

19.
We compared soil moisture from the soil water balance model for European Water Accounting (swbEWA) with in situ observations from nine locations in three European climatic zones (continental, Mediterranean and maritime temperate), for different periods between 2003 and 2011. Despite the simplicity of the swbEWA model, the patterns of temporal changes in soil moisture content are well represented at all locations. Annual averages show that the model overestimates the soil moisture content, and that overestimations are the smallest when measurements are obtained from more than one depth. These results suggest that the relationship between simulated and observed soil moisture also depends on the number of measurements and the depth over which they are taken. In the continental climate, where snow cover and frozen soil influence soil moisture, we observe higher root mean square error values in winter months. However, in the Mediterranean and maritime temperate climates, we do not observe clear common seasonal patterns in the soil moisture profile, which makes it difficult to relate the model’s accuracy to climate. With the percentage of correctness and probability of detection measures, we tested the model performance in simulating dry versus non-dry events. The percentage of the correctly classified dry and non-dry events is higher than 84 % at all locations, whereas the probability to detect dry events is significantly lower, exceeding 50 % at only four out of nine stations. The frequency distribution of consecutive days with dry soil (CDDS) confirms the model performance: higher number of short dry periods (with less than 20 days of soil moisture near wilting point) are reproduced and observed in continental climates, whereas long dry periods (longer than 50 days) are noted in the Mediterranean climate. Overall, the statistical measures suggest that the model produces the highest accuracy in summer months at the stations in continental climates, whereas in the Mediterranean climate, the accuracy is slightly higher in the colder seasons.  相似文献   

20.
Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World’s most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号