首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osphradium of Conus flavidus, Lamarck has been examined by histological methods. Each lamella consists of 3 clearly defined regions: a dorsal spine and digitiform processes extending ventrally, composed of pseudostratified epithelium and occasional hair cells; a lateral and interdigitating region which contains numerous hair cells arranged in discrete ridges; a lamella nerve originating from the osphradial ganglion which sends a branch down the centre of each digitiform process. Each lamella has ciliary tracts which cause fluid, impinging on the osphradium, to be passed repeatedly between the lamellae and, therefore, to come into contact with the hair cells which are believed to be the primary sensory units of chemoreception in this organ. The whole structure responds immediately to substances dissolved in water by increased lamellar movement and by arching of the whole structure in towards the osphradial axis.  相似文献   

2.
Despite the importance of understanding feeding in the early stages of bivalve development, little information is available concerning the organogenesis of the bivalve gill. The present study used histological and scanning electron microscopical techniques to present a detailed account of gill development in the early stages of the scallop Pecten maximus L. (Bivalvia: Pectinidae). Live specimens from larval cultures were observed daily using light microscopy, while five scallops were sampled for electron and light microscopy every 2 to 3 d from Day 18 to 35, then weekly to Day 56, with a final sampling on Day 58. Although development was continuous, four distinct stages were identified (1-primordia, 2-homorhabdic unreflected, 3-homorhabdic reflected, 4-heterorhabdic), partially recapitulating the presumed phylogenetic evolution of this character in the Pectinidae. The absence of a ventral grcove in all stages suggests that the particle transport mechanism of pectinids evolved independently of such a structure, which is found in other bivalve families. Similarly, the absence of latero-frontal cilia in all specimens up to the largest observed (4 mm) indicates that the single row found in adults is a later development, rather than a vestige of a more abundant ciliation in ancestral forms. The anatomical data, together with in vivo observations of feeding in postlarvae, suggest that the developmental stages of the P. maximus gill correspond to critical changes in gill function. The early life of P. maximus may thus be characterized by distinct functional changes in feeding.  相似文献   

3.
The tentacles of the larvae of Phragmatopoma californica (Fewkes) a tubicolous, reef-building polychaete, were examined by video-equipped light microscopy and transmission and scanning electron microscopy. The surface of the tentacles has a unique ciliation pattern, consisting of dorsal tufts of short immotile cilia, ventrolateral tufts of short and long immotile cilia, and ventral motile cilia. Cells bearing immotile cilia are primary sensory cells with long basal processes that form synapses with basiepithelial nerve fibers. The sensory cell cytoplasm is similar to that of nervous tissue, and contains microtubules, neurofilaments, and synaptic vesicles. Sensory cell synapses with basiepithelial nerves appear to be both axodendritic and axoaxonic. The structure of the immotile cilia is compared to that of motile cilia. Unlike motile cilia, immotile cilia are short, rigid, end in a blunt tip and possess and axoneme with typically arranged mictotubules that terminate in an electron-dense end plate. The basal feet of immotile cilia do not anastomose with adjacent basal bodies, and the ciliary membrane is loosely applied to the axoneme and is covered by a surface coat of filamentous material. The use of the larval tentacles during substrate exploration, and the location and ultrastructure of sensory cilia, indicate that they may be involved in the perception of substrateassociated chemical signals and/or mechanical cues of significance in substrate selection.  相似文献   

4.
The osphradium in the genus Conus is a prominent bi-lamellate structure lying in the mantle roof near to the base of the siphon. Fine structural examination shows that the component cells are organised into a peripheral and a central region. The peripheral region consists of pigmented epidermal cells forming prominent ridges between which are grooves, at the sides of which lie the sensory cells, protected in clefts. The central region is clearly differentiated from the peripheral by a prominent basement membrane. This region contains smooth muscle, paired nerve trunks and a discrete area of cells containing numerous, dense, cored vesicles.  相似文献   

5.
M. R. Roman 《Marine Biology》1977,43(2):149-155
Integumental sensilla were examined in 39 species of meso- and bathypelagic shrimps and 6 species of epibenthic shrimps. A tuft organ, consisting of a group of openended, tubular setae and so probably functioning as a chemosensor, is described. A single tuft with ancillary smaller tufts occur on the dorsal median surface of the fourth abdominal segment and two pairs of tufts occur on the proximal dorsal region of the telson of all oplophorid and pandalid shrimps examined. An additional tuft is present on the fifth abdominal segment of the rare bathypelagic Physetocaris microphthalma Chace. No tuft organs were identified in Processa canaliculata Leach, suggesting that they may not occur in all families of caridean shrimps. Acanthephyrid, systellaspid and pandalid shrimps have the integument completely covered by scales. These are extremely delicate and are normally removed during the process of catching the shrimp through abrasion of the integument by the net. The scales are peculiarly orientated, pointing anteriorly in the anterior half and posteriorly in the posterior half of the body. They probably have a sensory function as distance receptors, monitoring water currents and disturbances in the environment surrounding the shrimp.  相似文献   

6.
The effects of long-term exposure to low levels of water-accommodated fractions of Kuwait Crude oil, or to shortterm exposure to chemically dispersed oil, on the gill performance of the clam Venus verrucosa were investigated. Reduced pumping activities of the lateral cilia as well as interference with the normal beating activities of the eulaterofrontal cirri led to reduced clearance rates and retention efficiencies of food particles less than 6 m in diameter. On the other hand, frontal ciliary activities were significantly accelerated, while any retained oil droplets were conducted to the mouth region as food particles. The activities of terminal and sensory cilia were also enhanced and mucus production increased. The significance of these responses to the clam's energy budget is discussed.  相似文献   

7.
Feeding in early life stages of the sedentary snail Crepidula is effected both by the use of the radula and by filtering with the gill. The present study is a contribution to the knowledge of the mechanisms of feeding by early juvenile snails of Crepidula fecunda. Experimental observations were made on specimens of known ages as they were fed constant concentrations of microalgae in the presence of a primary biological film on a glass substrate. Feeding activity was filmed under the microscope, and images were digitized for the identification and quantification of feeding structures. A morphological analysis was made of the structures associated with this process. Results showed that the radula was functional beginning in 1-day-old juveniles, and the gill functioned in respiration. Gill function in filter-feeding began in juveniles of 9 days old when dorsal and ventral ciliation had developed, as well as the food pouch. The latter structure begins activity as soon as the gill starts food collection. Osphradia appeared simultaneous with development of the filter feeding capacity by the gill. In their earliest stages after metamorphosis, the young snails begin life by radular scraping of primary biofilms, gradually shifting to filter feeding as the gill developed a critical number of filaments and cilia.  相似文献   

8.
The technique of endoscopic video observation was used to study feeding processes of Placopecten magellanicus (Gmelin), collected from Bull Arm, Newfoundland in August 1991 and 1992, under near-natural feeding conditions. The fate of captured particles depended on the extent of ingestive or handling capacity saturation. Under low (1 to 10 particles l-1) to medium (10 to 20 particles l-1) particle concentrations, most particles were incorporated in continuous anteriorly directed slurries in the dorsal ciliated tracts of the gill arch and dorsal bends. As particle concentration or exposure time to the lower particle concentrations increased, four endogenous mechanisms of ingestion volume control were increasingly observed: (1) rejection of dense mucus-particle masses from the principal filament troughs onto the ventrally beating cilia and associated currents of the ordinary filament plicae, counter to and below the incoming pallial current maintained by the principal filament cilia; (2) intermittent stopping of the anteriorward flow in the dorsal ciliated tracts; (3) reduction or cessation of input from the principal filaments to the dorsal ciliated tracts; (4) detachment of the dorsal bends from the mantle to establish a shunt from the infrabranchial to the suprabranchial cavity. Chemical and histochemical tests of purified fluid withdrawn from the dorsal ciliated tracts indicate that mucus is present at all particle concentrations. Mucus therefore participates both in normal feeding and in ingestion volume control on the bivalve gill, although different mechanisms, and types of mucus, effect transport of material in the dorsal (feeding) and ventral (cleaning) ciliated tracts.  相似文献   

9.
The mechanisms by which light elicits a phototactic response in sponge larvae remain poorly understood. Here we investigate histological and behavioral aspects of the photoresponse in parenchymella larvae of three demosponges. Two species are photonegative during their entire larval life, while the other, initially photopositive, becomes photonegative only after swimming in the laboratory for 4 h to 6 h. All larvae are bullet-shaped, with a uniformly ciliated surface, except at their posterior end, which is unciliated but surrounded by a distinctive ring of long cilia, the tuft. The short cilia beat metachronally, generating the thrust to move the larva forward with clockwise rotation. The long cilia of the tuft do not beat metachronally and are apparently more involved in maneuvering than in the generation of thrust. Transmission electron microscopy revealed in one species that the axoneme of the short cilia contains a distinctive "9×3+2" microtubule pattern at its base, but the presence of such an arrangement in cilia of the tuft remains uncorroborated. Nevertheless, the differences in beating characteristics between the monociliated cells of the tuft and those in the rest of the body correspond to other cytological differences. Cilia of the tuft have a type-I basal body, a large basal foot, and a branched rootlet, whereas the remaining cilia have a type-II basal body, a smaller and simpler basal foot, and an unbranched rootlet. Furthermore, the cells forming the tuft have a characteristic distal protrusion filled with pigments and mitochondria. Several of these traits suggest that the monociliated cells of the tuft are involved in the larval photoresponse both as sensors and effectors. Drastic changes in light intensity have no effect on the beating of the short cilia. In contrast, they cause a predictable and instantaneous movement of each cilium in the tuft, triggering expansions and contractions of either a part or the entire tuft, which in turn alters the direction of swimming. Observations on free-swimming larvae suggest that the tuft works as a passive light-sensitive rudder in both photonegative species that contract their posterior cilia under high irradiance and in photopositive species that expand their cilia under high irradiance. However, in photonegative larvae that expand the tuft under high irradiance, an active ciliary coordination by the larva needs to be invoked to explain a deviation of the swimming trajectory.  相似文献   

10.
Mercuric (Hg) and zinc (Zn) chloride toxicity was investigated in cerebroneuronal cells and gills of Bellamya bengalensis using sublethal concentrations under lab conditions. Freshwater snail B. bengalensis was exposed to mean LC50 concentration (1.56 ppm and 12.7 ppm) of Hg and Zn chloride, respectively. Bioaccumulation of Hg and Zn was observed in nervous and gill tissue in proportion to the time of exposure. Respiratory mechanisms and rate of oxygen consumption was depleted by both metals. Histopathological alterations in cerebro neuronal cells (giant, large, medium, and small) and gill filamental epithelia were apparent in Hg and Zn-exposed snails. Histopathology demonstrated increased cytoplasmic basophilia, extreme indentation of plasma membrane, karyolitic and eccentric nuclei, nuclear envelope with irregular size, and shrunken appearance of cerebroneuronal cells. Histologically, gill filamental epithelia showed hypertrophy, enlarged ciliated margins reduced length of cilia, nuclear dilations, thickening of basal lamina, and hemocytic accumulations in induced cells and severe loss of goblet mucus cells at the tip. Histopathology was accompanied by dysfunctioning cilia with decreased rate of respiration. Overall, neuronal impairment with damaged gill filament produced improper gaseous exchange leading to sluggish movement.  相似文献   

11.
Quantitative data on the water currents produced by the ciliary tracts of the gill filaments are needed to understand the fluid mechanics of suspension feeding in bivalves, as well as in other ciliary suspension feeders. This paper investigates the water currents produced by the bands of lateral cilia, as studied on isolated gill filaments, gill fragments, and intact gills of the mussel Mytilus edulis L with severed adductor muscles. The metachronally beating cilia produce oscillatory currents near the oscillating enveloping surface of the ciliary bands and rectilinear currents, the interfilamentary through-currents, farther from the surface. It is suggested that the oscillatory currents play an important role in the fluid mechanical capture of suspended particles. In the intact gill the interfilamentary currents pass the bands of lateral cilia at velocities that are two or more times higher than those generated by the bands of isolated filaments. The mussel gill is compared with an optimized peristaltic pump.  相似文献   

12.
The organization, general anatomy, and surface microanatomy of all regions of the gills of a representive bivalve mollusc, Placopecten magellanicus Gmelin, were studied using stereo-microscopic, histological, and scanning electron microscopic techniques. Individuals were collected in May and November 1985 from Chamcook Bay, New Brunswick, Canada. In addition to correcting earlier accounts of this structure, a number of new observations are reported. The orientation of the ciliated spurs appears to be responsible for the sinusoidal arrangement of the gill filaments. Micrographs showing the structure of the dorsal respiratory expansion are presented. The entire abfrontal surface of the principal filament, including the dorsal respiratory expansion, is densely ciliated and mucosecretory. These characteristics may aid in the establishment of a respiratory current and in the prevention of gill damage during escape responses. All nonciliated regions of the gill filaments are covered with microvilli, thus greatly increasing the surface area of the gill. The feeding mechanism is discussed in relation to the dorsal and ventral ciliated tracts. Symbiotic ciliate protozoans are constantly dislodged from the gill filaments and transported via the ventral mucus string to the buccal region. The nutritional implications of these observations are discussed.  相似文献   

13.
Mary Crisp 《Marine Biology》1973,22(3):231-240
The fine structure of the osphradia of Buccinum undatum 1. three Hawaiian Conus spp., Nassarius reticulatus (L), Nucella lapillus (L) and Littorina littorea (L) was examined. There is a remarkable uniformity in the arrangement of ultrastructural cell types in all the ospharadia investigated. The marginal glandular region is characterised by a single layer of cells, bearing a regular pallisade of microvilli and including two types of mucous cell. The epithelium of the sensory region is several cells deep, and bears a complex layer of microvilli in many orientations. Besides indifferent cells it contains two types of cell bodies of ciliated nerve processes. One type ends at the surface of the sensory region. The other, containing an elaborate array of smooth membranes in the perikaryon, has a process which enters the transitional region between sensory and glandular areas. In the transitional region, specialised cells with motile cilia adjoin the glandular region, and similar, but unciliated cells, containing large pigment granules scattered throughout the cytoplasm, adjoin the sensory region. The distal surface of both cell types is dissected by elefts extending 2 to 3 proximally, then widening into extensive spaces which contain cytoplasmic processes. The ciliated neurites which enter the transitional region end in the spaces at the base of the unciliated transitional cell elefts. It is suggested that the neuroepithelial cell processes, both those distributed over the sensory region and those concentrated in the transitional region, are receptors.  相似文献   

14.
The lack of fundamental data on the abfrontal surface of bivalve gills has prompted a comparative study of cilia and mucocytes on this surface, using scanning electron microscopy and histology on eight species of bivalves, representing seven families and the four major gill types: Mytilus edulis, Modiolus modiolus, Arca zebra, Placopecten magellanicus, Crassostrea virginica, Spisula solidissima, Mercenaria mercenaria, and Mya arenaria. Abfrontal cilia and mucocytes were found in all species studied, with types and densities differing within and between gill types. The three species of homorhabdic filibranchs presented different densities of abfrontal cilia and mucocytes, from very dense in M. edulis to sparse in A. zebra. The heterorhabdic gills had intermediate cilia and mucocyte densities, with highest concentrations of both abfrontal cilia and mucocytes on the principal filaments. The eulamellibranchs showed low ciliary densities together with high mucocyte densities, especially in S. solidissima, where the abfrontal mucocytes were glandular. These results indicate that: (1) the abfrontal surface is a vestigial mucociliary surface; (2) the abfrontal surface cannot participate in water pumping in most species, due to low ciliary densities; and (3) species with high densities of abfrontal mucocytes could utilize abfrontal mucus to reduce drag, especially in the highly fused gills, such as those of the eulamellibranchs. The differing distributions of abfrontal cilia and mucocytes may reflect different selective pressures acting on the gills within the various taxa. Received: 12 February 2000 / Accepted: 10 September 2000  相似文献   

15.
Veliger larvae of Mytilus edulis (L.) from Menai Straits, North Wales, were maintained for up to 2 mo during 1981 at 5°C and then grown on to metamorphosis at 17°C. Larvae so treated showed similar low mortality and equivalent spat production to control larvae. Growth rate at 17°C was less in treated larvae than in controls, but treated larvae grew a little during the period at low temperature. Larvae of Pecten maximus (L.) from the Irish Sea suffered high mortality at low temperature but larvae surviving 2 wk at 8°C could be grown on to spat at 17°C. The longevity of M. edulis larvae is discussed in relation to the genetic homogeneity of adult populations around the UK.  相似文献   

16.
The internal anatomy and microanatomy of the gill of Placopecten magellanicus Gmelin collected in May and November 1985 from Chamcook Bay, New Brunswick, Canada, was studied using thin-section light microscopy and transmission electron microscopy. Most of the spurs show no evidence of organic union, and hence do not participate in vascular exchange. However, the dorsal bend shows both ciliary and organic interfilamentar union. The internal structure and the hemocytes of the dorsal respiratory expansion are presented. The epithelium consists of three distinct cell types, bounded by apical microvilli. All regions of the gill contain an epithelial basal membrane, which is greatly convoluted in the interconnecting vessels of the dorsal respiratory expansion. The significance of these observations is discussed in relation to possible roles in respiration, transmembrane transport and nutrition. The apical surface of all ciliated cells is covered with an acellular matrix composed of clear spherical vesicles, which may serve a mechanical function for which mucus would be unsuited. The significance of the abundance of mucocytes on the abfrontal surface of the principal filaments is discussed in terms of the escape response of pectinid bivalves.  相似文献   

17.
The RNA and DNA contents of the male and female portions of the gonad of the hermaphroditic marine bivalve molluscPecten maximus L. have been monitored throughout an annual reproductive cycle, from October 1985–September 1986, for a population from the Baie de Seine (Normandy, France). The DNA content of the male gonad was consistently 5 to 10 times greater than that of the female gonad, whilst the RNA content was lower. This underlines the basic premise that spermatogenesis involves the production of large numbers of small gametes, whereas oogenesis involves the production of few, large, synthetically active gametes. The RNA:DNA ratio is a good indicator of sexual maturation in the male gonad. Two peaks of RNA:DNA ratio were observed for the female gonad, possibly corresponding to gonad restoration and vitellogenesis.  相似文献   

18.
Larvae of the sabellariid polychaete Phragmatopoma californica (Fewkes), which were collected in San Diego, California and were competent to metamorphose after 18 to 30 d of development were observed in vivo by videoequipped light microscopy, and the fine structure of the larval tentacles was examined by transmission and scanning electron microscopy. Each tentacle has tufts of at least two types of immotile cilia arranged in dorsolateral and ventrolateral rows, and a ventral groove covered by two types of motile cilia that beat independently of each other. The epidermis is regionalized into glandular, sensory, locomotory, and support cell types and contains four longitudinal bundles of basiepithelial nerve fibers. A layer of connective tissue separates the epidermis and the nerve tracts from obliquely striated muscles that occur within the peritoneum that lines the central coelomic cavities. The peritoneum forms an intact coelomic epithelium that overlies and interdigitates with the muscle cells, with no intervening basal lamina. The muscle cells are considered to be intraperitoneal because they are located above the basal lamina and they lack intercellular junctions with the peritoneal cells. Specialized peritoneal cells form a striated myoepithelial blood vessel that partitions the coelom into medial and lateral cavities. No neuromuscular junctions were found, but both muscular and ciliary movement seem to be under neuronal control. The basiepithelial nerve terminals appear to synapse into the connective tissue layer toward the intraperitoneal muscle. Several similarities in tissue organization are noted between the larval tentacles of P. californica and the tube feet of echinoderms. Observations on the ontogeny, morphology, and behavior of the tentacles suggest that they are multifunctional organs involved in feeding, construction of the juvenile sand tube, locomotion, attachment, and sensory perception during larval and adult lives.  相似文献   

19.
As a basis for understanding the functions of labial palps in the blue mussel Mytilus edulis, the structure and histology of palps were studied using light and scanning electron microscopy. Mussels used in the present study were collected in August 1993 and April 1994. The palp ridged surface is characterized by the presence of a smooth but densely ciliated dorsal fold, upon which rests the corresponding demibranch ventral region. The underside of the dorsal fold and the palp ridges fuse to form vestigial ciliated tracts. The dorsal fold is capable of contraction, allowing it to cover variable amounts of the ridged surface. Two different types of mucocyte are present on the palp ridged surface: subepithelial, glandular, acid-dominant secretion mucocytes and epithelial mucocytes characterized by neutral secretions. In histological section, these mucocytes appear to be concentrated on anatomical features known to intervene in particle handling. The anatomical and histological features of the smooth surface are typical of bivalve labial palps, except that the dense ciliation of the dorsal fold begins in the dorsal region of the smooth surface, indicating the possible origin of this feature. Previous studies on M. edulis point to the palps as the probable site for both ingestion volume control and particle selection; the anatomical basis of the present study should facilitate further research on these aspects.  相似文献   

20.
Acquisition of particle processing capability in postlarval oysters depends upon the structural development of the pallial organs, as well as the development of cilia and mucocytes used (either directly or indirectly) in particle capture and transport. Mucocyte mapping was therefore used to identify mucocyte types and distributions throughout gill development in juvenile oyster Crassostrea gigas (Thunberg 1793) specimens from 2.9 mm to 2.4 cm in shell length. Three categories of gill filaments were identified: apical, lateral and principal filaments, corresponding to filament location or future location in gill plicae. Mucocyte densities were recorded per linear μm (l μm) of frontal surface, and converted to potential total volumes, using the mean volumes of each of the two major mucocyte types: acid mucopolysaccharide (AMPS)-mucocytes and mixed mucopolysaccharide (MMPS)-mucocytes. While AMPS secretions were dominant up to 1.0 cm (flat homorhabdic gill, to semi-heterorhabdic differentiation and plication), MMPS secretions increased progressively, dominating in 2.4 cm and adult specimens (fully heterorhabdic and plicated). Mucus composition, and hence mucus viscosity, thus appears to evolve in relation to the degree of enclosure of the gill frontal surfaces. Total (AMPS + MMPS) potential mucus secretion increased allometrically with juvenile growth, characterized by a sharp increase between 10 and 24 mm shell length, suggesting a marked improvement in particle processing capability. Mucocyte distributions on the gill were heterogeneous from the onset of heterorhabdic differentiation (7.5 mm): the apical filaments of the plicae contained much greater mucocyte total volumes, compared to the lateral and principal filaments. In addition to mucus composition, total potential mucus volume thus also evolved in relation to the degree of enclosure of the gill frontal surfaces. These results show that functional specialization in mucocyte distribution precedes the complete anatomical heterorhabdic differentiation. The completely functional adult gill system is thus attained in 2.4 cm juveniles. This information should be of use in understanding the dynamics of juvenile feeding, growth, and mortality, both in natural systems and in rearing operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号