首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There has been an increase in the development and deployment of battery energy storage systems (BESS) in recent years. In particular, BESS using lithium-ion batteries have been prevalent, which is mainly due to their power density, performance, and economical aspects. BESS have been increasingly used in residential, commercial, industrial, and utility applications for peak shaving or grid support. As the number of installed systems is increasing, the industry has also been observing more field failures that resulted in fires and explosions. Lithium-ion batteries contain flammable electrolytes, which can create unique hazards when the battery cell becomes compromised and enters thermal runaway. The initiating event is frequently a short circuit which may be a result of overcharging, overheating, or mechanical abuse. During the exothermic reaction process (i.e., thermal runaway), large amounts of flammable and potentially toxic battery gas will be generated. The released gas largely contains hydrogen, which is highly flammable under a wide range of conditions. This may create an explosive atmosphere in the battery room or storage container. As a result, a number of the recent incidents resulted in significant consequences highlighting the difficulties on how to safely deal with the hazard. This paper identifies fire and explosion hazards that exist in commercial/industrial BESS applications and presents mitigation measures. Common threats, barriers, and consequences are conceptually shown and how they would be identified in a hazard mitigation analysis (HMA). Mitigation measures that can be implemented to reduce the risk of a fire or an explosion are discussed. The presented information is intended to provide practical information to professionals and authorities in this fairly new industry to assure that prevention and mitigation strategies can be effectively implemented and that the regulatory requirement of the HMA can be met.  相似文献   

3.
A full probabilistic Explosion Risk Analysis (ERA) is commonly used to establish overpressure exceedance curves for offshore facilities. This involves modelling a large number of gas dispersion and explosion scenarios. Capturing the time dependant build up and decay of a flammable gas cloud size along with its shape and location are important parameters that can govern the results of an ERA. Dispersion simulations using Computational Fluid Dynamics (CFD) are generally carried out in detailed ERA studies to obtain these pieces of information. However, these dispersion simulations are typically modelled with constant release rates leading to steady state results. The basic assumption used here is that the flammable gas cloud build up rate from these constant release rate dispersion simulations would mimic the actual transient cloud build up rate from a time varying release rate. This assumption does not correctly capture the physical phenomena of transient gas releases and their subsequent dispersion and may lead to very conservative results. This in turn results in potential over design of facilities with implications on time, materials and cost of a project.In the current work, an ERA methodology is proposed that uses time varying release rates as an input in the CFD dispersion simulations to obtain the fully transient flammable gas cloud build-up and decay, while ensuring the total time required to perform the ERA study is also reduced. It was found that the proposed ERA methodology leads to improved accuracy in dispersion results, steeper overpressure exceedance curves and a significant reduction in the Design Accidental Load (DAL) values whilst still maintaining some conservatism and also reducing the total time required to perform an ERA study.  相似文献   

4.
In the past, gas explosion assessment relied on worst case scenarios. A more realistic approach is to look at the probability of explosions and their likely severity. The most flexible way of investigating many different scenarios is to estimate a ventilation flow, feed this into a flammable volume calculation and then calculate the explosion severity. The procedure allows many parameters to be varied efficiently. A Computational Fluid Dynamics porous model is evaluated for modelling the ventilation flow through congested regions, including a new method that has been developed to derive the resistance. Comparison with velocity measurements from a large scale model of an offshore module showed that overall the CFD model performs very well, especially considering that the homogenous porosity block does not model any of the internal obstructions and therefore would not predict any local flow effects. This gives confidence that the overall flow pattern is sufficiently close to the local flow patterns, to be used in explosion assessments. The porous approximation in CFX is found to underpredict the turbulence intensity in the obstacle array compared to the explosion model EXSIM. Improving the turbulence prediction in the porous model would be valuable, so a relatively simple method of increasing the turbulence in porous regions is proposed. The CFD model will provide the non-uniform natural ventilation flowfields of complex regions for future explosion assessments at a hierarchy of levels.  相似文献   

5.
通过对铅酸蓄电池室燃爆事故树定性分析 ,找出了可能导致铅酸蓄电池室燃爆事故发生的基本原因事件 ,即无通风设施 ,通风设施损坏 ,未及时送、排风 ,使用不防爆电器 ,防爆电器损坏 ,电气连接处接触不良 ,人体静电放电 ,室内吸烟 ,室内动火。为了预防铅酸蓄电池室燃爆事故的发生 ,关键是 :一要采取有效的通风措施 ,保持蓄电池室通风良好 ,使氢气浓度不能达到爆炸极限 ;二要采取防止火源发生的措施 ,使蓄电池室无点火源 ,只要蓄电池室内无火源 ,即使氢气浓度达到爆炸极限 ,也不可能发生燃爆。为了达到上述两个要求 ,就必须在防火防爆技术和管理方面采取相应的安全措施  相似文献   

6.
The main objective of this study is to quantify the potential overpressures due to Vapor Cloud Explosions (VCEs) and the potential gas buildup by using Computation Fluid Dynamics (CFD) for onshore or offshore facilities.A series of CFD simulations and analyses have been performed for the various vapor dispersion scenarios, covering different release rates and release locations. The overpressure that could result from the potential VCE is assessed by CFD simulation for the largest explosive transient gas cloud. The results from the analyses also comprise an extensive picture of probable leak scenarios having the potential to make an explosive gas cloud.The CFD analysis results could be applied to provide input for detailed risk-based design and risk analysis, to find safe and cost-optimal design against explosions.  相似文献   

7.
为定量分析半封闭空间内液化天然气(LNG)泄漏后果,利用计算流体力学(CFD)软件FLUENT,对不同条件下的“冷箱”内LNG泄漏后扩散与爆炸过程进行了模拟。结果表明:无论通风与否,危险区域(甲烷体积分数为5%~15%)一直存在,但通风时该区域比无通风时小; LNG泄漏后会导致箱内温度降低,且泄漏量越大温度下降越低,但通风在一定程度上能减小温降; 当危险区域最大时,发生爆炸产生的超压最大,对于泄漏量小的情况,通风能减小爆炸压力; 障碍物的存在会增大爆炸压力,研究中的最大爆炸超压为158 kPa,可对设备与人员造成严重危害,故在设计“冷箱”时须提出相应的强度要求。研究方法与结果对于与“冷箱”类似的受限空间安全设计与风险评估有指导意义。  相似文献   

8.
9.
Utility-scale lithium-ion energy storage batteries are being installed at an accelerating rate in many parts of the world. Some of these batteries have experienced troubling fires and explosions. There have been two types of explosions; flammable gas explosions due to gases generated in battery thermal runaways, and electrical arc explosions leading to structural failure of battery electrical enclosures. The thermal runaway gas explosion scenarios, which can be initiated by various electrical faults, can be either prompt ignitions soon after a large flammable gas mixture is formed, or delayed ignitions associated with late entry of air and/or loss of gaseous fire suppression agent. The electrical explosions have entailed inadequate electrical protection to prevent high energy arcs within electrical boxes vulnerable to arc induced high pressures and thermal loads. Estimates of both deflagration pressures and arc explosion pressures are described along with their incident implications.  相似文献   

10.
This study presents two methodologies which can be used to determine the classification and extended area of hazardous zones caused by gas, vapours and mists. The first is based on UNE 60079/10/1: Electrical apparatus for explosive gas atmospheres – Part 10: Classification of hazardous areas, whilst the second is developed on the basis of Computational Fluid Dynamics (CFD) using the FLUENT software application. Both methodologies were applied in the same case study of differing leakage components from a dairy farm steam boiler room fuelled by liquid natural gas (LNG).The results obtained show that CFD methodology is a powerful tool with a significant capacity for determining the size of an explosive atmosphere for a broad range of exhaust sources. This methodology offers more conservative results than those obtained from the analytical methodology recommended in Standard UNE 60079/10/1. Results obtained using CFD are more useful in enabling the study of turbulence phenomena, boundaries, and diverse initial and contour conditions.In contrast, the Standard UNE 60079/10/1 methodology is less conservative and aims at determining the hypothetical volume Vz of the explosive atmosphere. This volume is a measurement of the ventilation efficiency which is in turn proportional to a massive gas release through an exhaust source divided by the number of air changes in the enclosed area.From the results obtained, it can be confirmed that Standard UNE 60079/10/1 should be revised.  相似文献   

11.
Hydrogen explosion risk needs to be carefully assessed and evaluated in nuclear facilities because of the potential catastrophic consequences: breakdown of safety equipments, failure of containment, dissemination of radioactive materials in the environment.When studying an indoor release, one possible simplification is to assume a perfect gas mixing inside the room. This assumption is effectively often used to evaluate toxic risks in the environment outside a building (Mastellone, Ponte, & Arena, 2003). However, perfect gas mixing assumption is only a rough approximation, as indoor concentrations can largely differ from mean values, due to buoyancy, recirculation zones or obstacles for example.In order to better evaluate the risk of explosion in case of an accidental release of hydrogen, IRSN conducted a numerical study using FLACS CFD software. Several parameters have been studied to identify dangerous situations and draw a representative picture of the risk: room size, position and direction of hydrogen leak, ventilation characteristics. Hydrogen release flow rates used for numerical simulations have been chosen as the highest leak rate which, by applying the assumption of perfect mixing, produces an average concentration in the room equal to hydrogen lower flammability limit (LFL).Simulation results indicate that in some particular configurations, especially for impinging hydrogen jets, hydrogen concentrations can locally be above LFL and then create explosive atmospheres with significant volumes.  相似文献   

12.
Since the massive use and production of fuel oil and natural gas, the excavating locations of buried energy-carrying material are moving further away from onshore, eventually requiring floating production systems like floating production, storage and offloading (FPSO). Among those platforms, LNG-FPSO will play a leading role to satisfy the global demands for the natural gas in near future; the LNG-FPSO system is designed to deal with all the LNG processing activities, near the gas field. However, even a single disaster on an offshore plant would put the whole business into danger. In this research, the risk of fire and explosion in the LNG-FPSO is assessed by quantitative risk analysis, including frequency and consequence analyses, focusing on the LNG liquefaction process (DMR cycle). The consequence analysis is modeled by using a popular analysis tool PHAST. To assess the risk of this system, 5 release model scenarios are set for the LNG and refrigerant leakages from valves, selected as the most probable scenarios causing fire and explosion. From the results, it is found that the introduction of additional protection methods to reduce the effect of fire and explosion under ALARP criteria is not required, and two cases of the selection of independent protection layers are recommended to meet the SIL level of failure rate for safer design and operation in the offshore environment.  相似文献   

13.
Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed.  相似文献   

14.
为研究地下综合管廊燃气舱结构形式对燃气爆炸超压的影响,采用数值模拟的方法,改变燃气舱高度,通风分区长度和局部开口大小,分析不同情况下的燃气爆炸超压变化规律。结果表明:冲击波传播速度随燃气舱高度的增加而减小,随着高度的增加,超压峰值曲线由“驼峰状”逐渐变为两端高中间低的“盆形”,爆炸过程产生的最大超压与高度成反比关系。超压峰值在340 m处接近0 kPa,延长通风分区并不会增加超压峰值,可以在考虑防火的要求下根据实际情况适当延长通风分区的长度。局部开口的存在使得爆炸气流能够自由泄压,超压峰值与开口的大小成反比关系。  相似文献   

15.
Dilution ventilation systems have been widely used to control the airborne toxic and explosive material in confined spaces. Layout design of dilution ventilation is critical to industrial hygiene control and ventilation efficiency. A properly designed dilution ventilation system can significantly improve the safety of confined workshops and maintain a comfortable work condition. In this work, Computational Fluid Dynamics (CFD) has been used to analyze the performance of dilution ventilation system in the confined workshop environment. Seven different ventilation layouts are proposed to evaluate ventilation performance of different installation layouts. Carbon monoxide (CO), which has the similar density as air, is selected as the sample contaminant to conduct steady-state CFD simulations. The simulation results of different layouts are examined and compared to get the optimal layout design for the best contaminant control. Results have shown that the layout with two opposite inlets has the highest ventilation efficiency among seven proposed layouts. This work can serve as a reference to increase dilution ventilation efficiency and minimize the energy cost in general confined areas.  相似文献   

16.
After investigating gas dispersion on a cylindrical Floating Liquefied Natural Gas (FLNG) platform (Li et al, 2016), this second article focuses on assessment of gas explosion by using Computational Fluid Dynamics (CFD). Gas explosion simulations are carried out to evaluate the explosion overpressure mitigating effect of safety gap. The Data-dump technique, which is an effective tool in resetting turbulence length scale in gas explosion overpressure calculation, is applied to ensure simulation accuracy for the congestion scenario with safety gap. Two sets of different safety gaps are designed to investigate the safety gap on the cylindrical FLNG platform, the overall results indicate that the safety gap is effective in reducing overpressure in two adjacent congestions. However, for the explosion scenario where the flame is propagating through several safety gaps to the far field congestion, the safety gap mitigates overpressure only in certain explosion protecting targets. Two series of artificial configurations are modeled to further investigate the explosion scenarios with more than two safety gaps in one direction. It is concluded that the optimal safety gap design in overpressure mitigation for the cylindrical FLNG platform is to balance the safety gap distance ratio in the congested regions.  相似文献   

17.
为研究海上钻探平台井喷燃爆事故后果,运用FLACS软件对某深海钻探平台井喷爆炸事故进行模拟,研究在不同事故场景下气云爆炸发展过程及平台荷载分布规律,讨论井喷速率、风向、点火位置等对爆炸超压的影响。研究结果表明:随泄漏速率增加,爆炸强度和爆炸范围均增大,爆炸严重程度不仅与井喷速率密切相关,同时也受平台结构影响;点火位置会对爆炸超压产生影响,在可燃气体与空气混合气体比例为化学理论当量比处点燃气体,生活区承受的爆炸超压最大;在设施及建构筑物分布较为密集、拥塞度较高的地方产生的爆炸超压更大。研究结果可为可为平台的阻隔防爆性能设计与应急响应提供指导。  相似文献   

18.
Accidental gas releases are detected by allocating sensors in optimal places to prevent escalation of the incident. Gas release effects are typically assessed based on calculating the dispersion from releasing points. In this work, a CFD-based approach is proposed to estimate gas dispersion and then to obtain optimal gas sensors allocation. The Ansys-Fluent commercial package is used to estimate concentrations in the open air by solving the governing equations of continuity, momentum, energy and species convection-diffusion combined with the realizable κ-ε model for turbulence viscosity effects. CFD dynamic simulations are carried out for potential gas leaks, assuming worst-case scenarios with F-stability and 2 m/s wind speed during a 4 min releasing period and considering 8 wind directions. The result is a scenario-based methodology to allocate gas sensors supported on fluid dynamics models. The three x–y–z geographical coordinates for the sensor allocation are included in this analysis. To highlight the methodology, a case study considers releases from a large container surrounded by different types of geometric units including sections with high obstacles, low obstacles, and no obstacles. A non-redundant set of perfect sensors are firstly allocated to cover completely the detection for all simulations releases. The benefits of redundant detection via a MooN voting arranging scheme is also discussed. Numerical results demonstrate the capabilities of CFD simulations for this application and highlight the dispersion effects through obstacles with different sizes.  相似文献   

19.
环己烷具有闪点低、爆炸极限宽等特点,一旦发生泄漏,着火爆炸的危险性随时存在。利用计算流体动力学模拟的方法对工程项目中环己烷的泄漏事故进行模拟及风险分析,建立环己酮生产装置的全尺寸三维模型并进行仿真计算,模拟了不同泄漏场景所形成的环己烷可燃气体云团瞬态发展过程及影响范围,并对建构筑物的布局对可燃气体云团的扩散行为的影响进行研究。研究结果表明,通过优化建构筑物布局,可有效降低该装置环己烷的燃爆风险,为企业相关装置的总图布置及环己烷泄漏的安全监控和应急响应提供有价值的参考数据。  相似文献   

20.
Combustion or explosion accident resulting from accidental hydrocarbon release poses a severe threat to the offshore platform's operational safety. Much attention has been paid to the risk of an accident occurring over a long period, while the real-time risk that escalates from a primary accident to a serious one was ignored. In this study, a real-time risk assessment model is presented for risk analysis of release accidents, which may escalate into a combustion or explosion. The proposed model takes advantage of Fault Tree-Event Tree (FT-ET) to describe the accident scenario, and Bayesian network (BN) to obtain the initial probability of each consequence and describe the dependencies among safety barriers. Besides, Computational Fluid Dynamics (CFD) is applied to handle the relationship between gas dispersion and time-dependent risk. Ignition probability model that considering potential ignition sources, gas cloud, and time series are also integrated into this framework to explain the likelihood of accident evolution. A case of release accidents on a production platform is used to test the availability and effectiveness of the proposed methodology, which can be adopted for facilities layout optimization and ignition sources control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号