首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-?lesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-?lesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments.  相似文献   

2.
Lead concentrations and Pb isotope ratios were measured in the forest floor, mineral soil and vegetation at a white pine and a sugar maple stand in a woodland in south central Ontario. Lead concentrations decreased and 206Pb/207Pb ratios increased with mineral soil depth reflecting the mixing of pollution and natural Pb sources. Lead concentrations and 206Pb/207Pb ratios at 20-30 cm depth were approximately 6-7 mg/kg and 1.31-1.32, respectively. Assuming an integrated 206Pb/207Pb ratio in deposition over time of 1.18, estimated from lichen measurements and published data for the region, approximately 65% of Pb in the surface (0-1 cm) mineral soil is from anthropogenic sources. Approximately 90% of pollution Pb is found in the 0-10 cm soil layer (Ah) and less than 3% of the pollution Pb is present in the forest biomass and mull-type forest floor combined. Despite low Pb concentrations in vegetation (<2.5 mg/kg), we estimate that between 65 and 100% of the Pb in vegetation and approximately 75% of the Pb in the forest floor is from pollution sources. In total, the pollution Pb burdens at the pine and maple stands are estimated to be 860 and 750 mg/m2, respectively.  相似文献   

3.
Lead (Pb), like many other pollutants, is carried into the Arctic by long-range atmospheric transport from industrial centers at lower latitudes. Unlike other pollutants, Pb can be used to assess emission source regions through the use of stable Pb isotope analyses. Using sediment cores from 17 lakes (three profiles and 14 top/bottom sample pairs) in the Søndre Strømfjord (Kangerlussuaq) region, West Greenland (67°N), this study assesses the extent and origin of Pb pollution along a 150 km transect between the Inland Ice and Davis Strait. Like ice core analyses from the interior of Greenland, the isotope analyses suggest pre-industrial contamination, although significant concentration changes in the lake sediments do not occur until the 18th/19th centuries, with the maximum concentrations occurring about 1970. Compared to the background, the Pb concentrations in recent sediments have increased about 2.5-fold, with slightly higher enrichments towards the coast, where annual precipitation is highest. For all of the lakes, there is a major decline in the 206Pb/207Pb ratio in the recent sediments (mean 1.218±0.030) as compared to deeper sediments (mean 1.365±0.084). Using a Pb isotope mixing model, we calculated an excess Pb isotope ratio, i.e. the isotope ratio necessary to produce the observed declines in recent sediments. While studies of atmospheric aerosols in the high Arctic (206Pb/207Pb ratio ∼1.16) have indicated that Russian emissions (206Pb/207Pb ratio ∼1.15–1.16) are a dominant source of arctic pollution, the excess Pb ratios of the lake sediments in the Søndre Strømfjord region (206Pb/207Pb ratio ∼1.14–1.15), in the low Arctic, suggest that W Europe (206Pb/207Pb ratio ∼1.14) is also a major emission source for this region.  相似文献   

4.
Sequential extraction (modified BCR procedure) combined with isotope analysis has been investigated as a tool for assessing mobilisation of lead into streams at an upland catchment in NE Scotland. The maximum lead concentrations (up to 110 mg kg(-1) in air-dried soil) occurred not at the surface but at about 10 cm depth. The lowest (206)Pb/(207)Pb ratios in any profile occurred, with one exception, at 2.5-5 cm depth. In the one exception, closest to the only road in the area, significantly lower (206)Pb/(207)Pb ratios in the surface soil together with much increased chloride concentrations (in comparison to other surface waters) indicated the possible mobilisation of roadside lead and transfer to the stream. The (206)Pb/(207)Pb ratios in extractable fractions tended at depth towards the ratio measured in the residual phase but the ratios in the oxidizable fraction increased to a value higher than that of the residual phase.  相似文献   

5.
Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios (207Pb/206Pb and 208Pb/206Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using 210Pb and 137Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low 207Pb/206Pb and 208Pb/206Pb ratios and enrichment factors (EFs?=?~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m?2 year?1 recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.  相似文献   

6.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

7.
Lead isotopes and heavy metal concentrations were measured in two sediment cores sampled in estuaries of Xiangjiang and Lishui Rivers in Hunan province, China. The presence of anthropogenic contribution was observed in both sediments, especially in Xiangjiang sediment. In the Xiangjiang sediment, the lower 206Pb/207Pb and higher 208Pb/206Pb ratio, than natural Pb isotope signature (1.198 and 2.075 for 206Pb/207Pb and 208Pb/206Pb, respectively), indicated a significant input of non-indigenous Pb with low 206Pb/207Pb and high 208Pb/206Pb. The corresponding concentrations of heavy metals (As, Cd, Zn, Mn and Pb) were much higher than natural values, suggesting the contaminations of heavy metals from extensive ore-mining activities in the region.  相似文献   

8.
Surface sediments and sediment cores collected at the Pearl River Estuary (PRE) and its surrounding coastal area were analysed for total metal concentrations, chemical partitioning, and Pb isotopic compositions. The distribution of Cu, Cr, Pb, and Zn demonstrated a typical diffusion pattern from the land to the direction of the sea. Two hotspots of trace metal contamination were located at the mixed zone between freshwater and marine waters. The enrichment of metals in the sediments could be attributed to the deposition of the dissolved and particulate trace metals in the water column at the estuarine area. The similar Pb isotopic signatures of the sediments at the PRE and its surrounding coastal area offered strong evidence that the PRE was a major source of trace metals to the adjacent coastal area. Slightly lower (206)Pb/(207)Pb ratios in the coastal sediments may indicate other inputs of Pb in addition to the PRE sources, including the inputs from Hong Kong and other parts of the region.  相似文献   

9.
Identification of mining-related contaminants is important in order to assess the spreading of contaminants from mining as well as for site remediation purposes. This study focuses on lead (Pb) contamination in biota near the abandoned ‘Black Angel Mine’ in West Greenland in the period 1988-2008. Stable Pb isotope ratios and total Pb concentrations were determined in lichens, seaweed and mussels as well as in marine sediments. The results show that natural background Pb (207Pb/206Pb: 0.704-0.767) and Pb originating from the mine ore (207Pb/206Pb: 0.955) have distinct isotopic fingerprints. Total Pb in lichens, seaweed, and mussels was measured at values up to 633, 19 and 1536 mg kg−1 dry weight, respectively, and is shown to be a mixture of natural Pb and ore-Pb. This enables quantification of mining-related Pb and shows that application of Pb isotope data is a valuable tool for monitoring mining pollution.  相似文献   

10.
The rapid economic development in the Yangtze River Delta (YRD), China in the last three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a 210Pb dated sediment core collected from the coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pb pollution in the region. The baseline Pb concentration in the coastal ECS sediments before the industrialization in China was 32 μg g−1, and the corresponding 206Pb/207Pb ratio was 1.195. The high-resolution profiles of Pb flux and 206Pb/207Pb ratios had close relationships with the economic development and the history of the use of leaded gasoline in China, and they were clearly different from those of most European countries and United States.  相似文献   

11.
This study examined trace metal contamination of sediments in Guiyu, China where primitive e-waste processing activities have been carried out. It was found that some river sediments in Guiyu were contaminated with Cd (n.d.-10.3mg/kg), Cu (17.0-4540mg/kg), Ni (12.4-543mg/kg), Pb (28.6-590mg/kg), and Zn (51.3-324mg/kg). The (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of the Pb-contaminated sediments of Lianjiang (1.1787+/-0.0057 and 2.4531+/-0.0095, respectively) were lower than those of Nanyang River (1.1996+/-0.0059 and 2.4855+/-0.0082, respectively), indicating a significant input of non-indigenous Pb with low (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios. Copper, Pb and Zn in the non-residual fractions noticeably increased in the contaminated sediments compared to those in the uncontaminated sediments. A genuine concern is associated with potential transport of the contaminated sediments downstream and enhanced solubility and mobility of trace metals in the non-residual fractions.  相似文献   

12.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

13.
Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg−1, 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206Pb and 208/206Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy.  相似文献   

14.
Total lead (Pb) concentration and Pb isotopic ratio (206Pb/207Pb) were determined in 140 samples from the Seine River basin (France), covering a period of time from 1945 to 2011 and including bed sediments (bulk and size fractionated samples), suspended particulate matter (SPM), sediment cores, and combined sewer overflow (CSO) particulate matter to constrain the spatial and temporal variability of the lead sources at the scale of the contaminated Seine River basin. A focus on the Orge River subcatchment, which exhibits a contrasted land-use pattern, allows documenting the relation between hydrodynamics, urbanization, and contamination sources. The study reveals that the Pb contamination due to leaded gasoline that peaked in the 1980s has a very limited impact in the river nowadays. In the upstream Seine River, the isotopic ratio analysis suggests a pervasive contamination which origin (coal combustion and/or gasoline lead) should be clarified. The current SPM contamination trend follows the urbanization/industrialization spatial trend. Downstream of Paris, the lead from historical use originating from the Rio Tinto mine, Spain (206Pb/207Pb?=?1.1634?±?0.0001) is the major Pb source. The analysis of the bed sediments (bulk and grain size fractionated) highlights the diversity of the anthropogenic lead sources in relation with the diversity of the human activities that occurred in this basin over the years. The “urban” source, defined by waste waters including the CSO samples (206Pb/207Pb?=?1.157?±?0.003), results of a thorough mixing of leaded gasoline with “historical” lead over the years. Finally, a contamination mixing scheme related to hydrodynamics is proposed.  相似文献   

15.
Lead isotopic ratios (LIR) of eight common food items, street dust, coal, diesel, sediments, lead ore and rainwater from India have been reported for the first time in this paper. This study characterized the source and extent of lead pollution in the different foodstuff consumed in Kolkata, a major metropolis of eastern India. The atmospheric lead input to the food items, sold openly in busy roadside markets of the city, has been quantified. The mean 207/206 and 208/206 LIRs of the eight food items ranged from 0.8847 to 0.8924 and 2.145 to 2.167, respectively. Diesel had the highest mean 207/206 and 208/206 values of 0.9015 and 2.1869, respectively, apart from the lead ore. The food items had a mean lead concentration between 3.78 and 43.35 mg kg?1. The two ratio scatter plots of all the different environmental matrices were spread linearly between the uncontaminated Ichapur sediment and diesel. The 207/206 LIRs of the coal with a mean of 0.8777 did not fall in the linear trend, while the street dust and food samples overlapped strongly. The rainwater sample had a 207/206 LIR of 0.9007. Contaminated sediments in Dhapa, the repository of the city’s municipal garbage, had a mean 207/206 LIR of 0.8658. The corresponding value obtained from the sewage-fed vegetable grown there was 0.8058. The present study indicated that diesel was one of the main contributor to Pb pollution. The atmospheric lead contribution to the food items was in the range of 68.48–86.66 %.  相似文献   

16.
Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a 210Pb-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The 206Pb/207Pb ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic 206Pb/207Pb ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.  相似文献   

17.
The Lot-Garonne fluvial system is known for its historic heavy metal pollution resulting from mining and smelting activities since the late 19th century. Here, we report 137Cs activities and heavy metal (Cd, Zn, Cu, Pb and V) concentration-depth profiles from sediment cores retrieved in 2001 from three reservoirs in the Lot River. High mean sedimentation rates of 2.4-2.8 cm a(-1) are indicated by 137Cs dating. The reservoir sediments have recorded the heavy metal deposition and thus allow establishing a connection between the temporal evolution of the heavy metal pollution and historical changes in smelting and waste-treatment proceedings. Based on heavy metal concentrations in sediments upstream of the anthropogenic inputs and bottom-sediments of the furthest downstream core (interpreted as old soil or riverbed), concentrations of approximately 17, approximately 82, approximately 0.33 and approximately 28 mg kg(-1) for Cu, Zn, Cd and Pb, respectively, are proposed as natural background values for the Lot fluvial system. The geoaccumulation index (Igeo [Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Ver?nderungen seit. Umschav 79, 133-149.]) revealed that the Lot River sediments must be considered as "severely polluted" in Cd and Zn. Moreover, despite remediation efforts undertaken in the former smelting site, the Lot River is still "severely" (Igeo approximately 4) and "moderately to severely" (Igeo>2) impacted by Cd and Zn inputs, respectively.  相似文献   

18.
During Fall 1996, epiphytic lichens were collected along altitudinal sections in two areas of France (the Vosges mountains in the North-East, and the Alps, in Haute-Savoie) in order to verify any geographic distribution of atmospheric metals on a small scale. These lichens have various Pb isotopic compositions (206Pb/207Pb=1.126–1.147) which are correlated with the altitude of sampling. Lichens sampled near valleys display isotopic ratios significantly less radiogenic than those sampled at several hundred to thousand meters of altitude. In the Vosges sections, Pb concentrations and isotopic compositions of lichens may be used to define three zones: (1) valley: Pb-rich and non-radiogenic ratios, (2) transition: low-Pb and intermediate isotopic compositions, (3) mountain: heterogeneous Pb concentrations but more radiogenic and homogeneous Pb isotopic composition. Other metals (Zn, Cu, Cd, As), when normalised one to another, are not fractionated between these zones and display homogeneous relative abundance along the altitudinal sections of both sites. Variation of 206Pb/207Pb ratios with altitude is interpreted in terms of mixing of at least two pollution sources: one being the petrol (leaded and/or unleaded) combustion, and the other being of industrial origin. The latter is characterised by a more radiogenic isotopic composition. The Pb isotopic composition of flue gas residues from different municipal solid waste combustors in the Rhine valley and in other areas of France would suggest that these plants might be an important source of industrial Pb in the atmosphere. If the average industrial Pb in France has a 206Pb/207Pb close to 1.15, between 60 and 80% of the total Pb in lichens from the Rhine valley would come from gasoline combustion, whereas 85–90% of the Pb would have an industrial origin in lichens from higher altitude in the Vosges mountains. Although lichens from the Alps were collected at higher altitude, the percentage of industrial Pb for these lichens would be slightly lower (65%). Major winds and convection winds in the different valleys must then play an important role in term of distribution of atmospheric Pb in function of altitude.  相似文献   

19.
In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream.  相似文献   

20.
The rapid economic development in the Pearl River Delta (PRD) region in South China in the last three decades has had a significant impact on the local environment. Estuarine sediment is a major sink for contaminants and nutrients in the surrounding ecosystem. The accumulation of trace metals in sediments may cause serious environmental problems in the aquatic system. Thirty sediment cores were collected in the Pearl River Estuary (PRE) in 2000 for a study on trace metal pollution in this region. Heavy metal concentrations and Pb isotopic compositions in the four 210Pb-dated sediment cores were determined to assess the fluxes in metal deposits over the last one hundred years. The concentrations of Cu, Pb and Zn in the surface sediment layers were generally elevated when compared with the sub-surface layers. There has been a significant increase in inputs of Cu, Pb and Zn in the PRE since the 1970s. The results also showed that different sampling locations in the estuary received slightly different types of inputs. Pb isotopic composition data indicated that the increased Pb in the recent sediments was of anthropogenic origin. The results of trace metal influxes showed that about 30% of total Pb and 15% of total Zn in the sediments in the 1990s were from anthropogenic sources. The combination of trace metal analysis, Pb isotopic composition and 210Pb dating in an estuary can provide vital information on the long-term accumulation of metals in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号