首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U. Båmstedt 《Marine Biology》2000,137(2):279-289
 Day/night zooplankton sampling in Kosterfjorden, Sweden, gave information on population succession, vertical distribution and feeding of Calanus finmarchicus over 17 months. Copepodid Stage 1 and 2 (C-I, C-II) were present from December to August, indicating reproduction during most of the year. Mating and breeding for the overwintering generation mainly took place in February/March, resulting in peak abundance of C-I in March/April. Secondary breeding periods were in April and July/August, but the resulting recruitment from these were low. The relative recruitment success in the first spring was around 13 times higher than during the second spring. Low temperature in the surface water early in the year and depression of the spring phytoplankton bloom may have caused the failure in the second year. Population biomass peaked at >15 g dry weight m−2 during the numeric peak of the youngest stages in March/April. A more sustainable level of high biomass of 8 to 10 g dw m−2 was gradually built up during summer, mainly due to a continuous accumulation of C-Vs. Adults and C-Vs comprised the overwintering population, with 7 to 14% and 85 to 93%, respectively, for the 2 years, but only C-Vs staying in the deep water were in a resting state. Adult males showed a strong diurnal vertical migration (DVM) of the usual type from spring to early autumn and a reversed DVM during the cold season. They were in a feeding state throughout the year. Adult females showed the usual type of DVM during summer to autumn, but commonly a reversed DVM during winter to spring. They were usually in a feeding state, with no pronounced differences between surface and deep water or between day and night. C-Vs aggregated in the deep water from October to March and performed DVM in April to June. They were commonly feeding in the deep water between March and June but showed no or very low feeding activity there from July to February. C-Vs in the surface water were commonly feeding and showed the highest proportion of feeding in autumn, when the population in the deep water was inactive. C-V constituted up to nearly 100% of the population biomass, and therefore must be of profound ecological importance. Defined by this dominant role, the population of C. finmarchicus can be characterised as having an active period of feeding, reproduction and development from February to July with a following 6 to 7 months of resting in the deep water, when development is arrested and no feeding occurs. Received: 1 October 1999 / Accepted: 27 April 2000  相似文献   

2.
A bottom-mounted upward-facing 38-kHz echo sounder was deployed at ~400 m and cabled to shore in Masfjorden (~60°52′N, ~5°24′E), Norway. The scattering layers seen during autumn (September–October) 2008 were identified by trawling. Glacier lanternfish (Benthosema glaciale) were mainly distributed below ~200 m and displayed three different diel behavioral strategies: normal diel vertical migration (NDVM), inverse DVM (IDVM) and no DVM (NoDVM). The IDVM group was the focus of this study. It consisted of 2-year and older individuals migrating to ~200–270 m during the daytime, while descending back to deeper than ~270 m during the night. Stomach content analysis revealed increased feeding during the daytime on overwintering Calanus sp. We conclude that visually searching glacier lanternfish performing IDVM benefit from the faint daytime light in mid-waters when preying on overwintering Calanus sp.  相似文献   

3.
The marine copepod Calanopia americana Dahl undergoes twilight diel vertical migration (DVM) in the Newport River estuary, North Carolina, USA, in synchrony with the light:dark cycle. Copepods ascend to the surface at sunset, descend to the bottom around midnight, and make a second ascent and descent before sunrise. Behavioral assays with C. americana in the laboratory during fall 2002/2003 and summer 2004 investigated aspects of three hypotheses for the proximate role of light in DVM: (1) preferendum hypothesis (absolute irradiance), (2) rate of change hypothesis (relative rates of irradiance change), and (3) endogenous rhythm hypothesis. Results suggest that C. americana responds to exogenous light cues consistent with its DVM pattern; changes in absolute irradiance evoked swimming responses that would result in an ascent at sunset and descent at sunrise, while relative rates of irradiance decrease at sunset (–0.0046 s–1) evoked an ascent response, and relative rates of irradiance increase at sunrise (0.0042 s–1) evoked a descent response. Furthermore, C. americana expressed an endogenous rhythm in vertical migration that was positively correlated with field observations of twilight DVM. Collectively, these results indicate that both exogenous light cues and endogenous rhythms play a proximate role in twilight DVM of C. americana, providing redundancy in the causes of its vertical migration.Communicated by J.P. Grassle, New Brunswick  相似文献   

4.
This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixed layer was typically shallow or non-existent. Upwelling occurred on the African shelf in a limited coastal sub-area of our sampling. The vertical distributions of the entire larval fish population, as well as of individual species, were independent of the seasonal thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths regardless of the thermocline position, probably because of its weak signature and spatial and temporal variability. Day/night vertical distributions suggest that some species did not perform diel vertical migration (DVM), whereas others showed either type I DVM or type II DVM. The opposing DVM patterns of different species compensate for each other resulting in no net DVM for the larval fish population as a whole.  相似文献   

5.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

6.
Several sets of plankton and hyperbenthos samples were collected from the Seine estuary in late May-early June of 1991, 1992 and 1994, and the abundance, size-frequency, horizontal and vertical distribution, and short-term fluctuations of Pleurobrachia pileus (O.F. Müller, 1776) were determined. In the Seine estuary, P. pileus was more abundant than reported for any other European shallow waters. Its depth-averaged density was 33 individuals m-3 in 1991 and 32 individuals m-3 in 1992, with a maximum density of 808 individuals m-3. The ctenophores displayed passive tidal advection and active diel vertical migration. In the outer estuary, high abundances were observed around low tide, and diel vertical migration was very pronounced. However, many individuals remained aggregated near the bottom at all times. In spring, the distribution of P. pileus coincided with the 33 and 150 S isohalines, with high abundances on the marine side of the estuary. It is suggested that aggregation of ctenophores near the bottom and diel vertical migration play an important role in the retention of P. pileus in the estuary. Two schemes of P. pileus life cycle in the Bay of Seine are proposed.  相似文献   

7.
D. Neumann 《Marine Biology》1986,90(3):461-465
Within the scope of studies on adaptation of insects to intertidal and sublittoral environments, correlations between the reproduction period of the short-lived chironomid Pontomyia pacifica Tokunaga and tidal conditions were examined at the only known Japanese location of this species in 1980. The larval habitat is situated, except for deeper tide pools in the lower midlittoral zone, mainly within the inner sublittoral zone, whose upper area is covered by Hypnea choroides, the dominating algae during the summer. The aerial adults emerge on the surface of the open sea and swarm there independent of the tidal situation above the submersed sublittoral habitat. Eclosion always started during dusk and all reproductive activities were ended within 2.5 h after sunset. The adaptation of P. pacifica (sublittoral habitat, diel eclosion after sunset with mass concentration of the adults on the water surface, no semilunar or lunar timing of the reproduction period and sinking egg masses) corresponds with those of the convergent marine chironomid Clunio balticus from Europe. On the basis of a few laboratory observations with P. pacifica and detailed experiments with C. balticus, it is supposed that the diel eclosion of P. pacifica is also controlled by an endogenous, circadian timing mechanism and the 24-h light-dark cycle as an environmental time cue.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
Herring (Clupea harengus L.) larvae from spring and autumn spawning stocks were reared at different constant temperatures from 5° to 17 °C. At equivalent developmental stages, the spring larvae were longer than the autumn larvae and the larvae reared at low temperatures were longer than those reared at high temperatures. At hatching and at the end of the yolk-sac stage, the larvae were induced, by a probe, to make C-start escape responses, which were recorded and analysed using a high-speed video recording at 400 frames s-1. The response was rapid and of short duration. The tailbeat frequency and swimming speed were measured during the burst of swimming following the C-start at different test temperatures and in larvae with different temperature histories. The tail-beat frequency was strongly temperature-dependent, rising from 19 Hz at 5 °C to 37 Hz at 17 °C with no effect of temperature history, season or developmental stage. The burst-swimming speed ranged at hatching from 75 to 90 mm s-1 at 5 °C to 110 to 160 mm s-1 at 17 °C and at yolk resorption from 90–115 mm s-1 at 5 °C to 175–190 mm s-1 at 17 °C. The longer, spring-spawned larvae swam faster than the shorter autumn-spawned larvae. When the swimming speeds were expressed as body lengths (L) s-1, these differences disappeared. Larvae swam from 7–9 L s-1 at 5 °C to 15–20 L s-1 at 17 °C at hatching, and from 8–9 L s-1 at 5 °C to 15–17 L s-1 at 17 °C at yolk resorption. There was, however, a significantly faster specific swimming speed by the larvae reared at 12 °C in spring 1991.Honorary Research Fellow of the Scottish Association for Marine ScienceUnfortunately, Karen Fretwell was drowned in an accident on 9 January 1993  相似文献   

10.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

11.
H. Hattori 《Marine Biology》1989,103(1):39-50
Diel changes in fine-scale vertical distributions of three calanoid copepods Metridia pacifica, M. okhotensis and Pleuromamma scutullata in the subarctic waters of the western North Pacific were examined. Sampling was carried out in June and August 1983, at two stations in Oyashio water using a Longhurst-Hardy Plankton Recorder (LHPR). Sampling, down to about 1 000 m, was repeated four to five times at intervals of several hours. Vertical resolution was 5 to 40 m. Copepods were concentrated in two strata, the surface (0 to 60 m) and the mesopelagic (200 to 300 m) layers, throughout the day at both stations. Younger M. pacifica (C III and C IV) were dominant in both strata. Although most female C V and adult females demonstrated diel vertical migration at 20 to 30 m h-1, a significant number of females did not migrate upward but remained in the deep stratum at night. The same trend was evident in M. ohkotensis and P. scutullata. Foregut content observations indicated that feeding activities of the deep mode populations were as high as those of the surface mode, though food of deep individuals was different. Such a bimodal distribution may increase intraspecific diversity of copepod populations and is possibly why metridiid copepods dominate during late summer to winter in the relatively simple ecosystems of high latitudes.  相似文献   

12.
Marine copepods commonly exhibit vertical movements in the water column over the diel cycle, termed diel vertical migration (DVM), with the most common pattern being an ascent in the water column to minimum depth around sunset and descent to maximum depth around sunrise. The present study characterized the DVM pattern of the pontellid copepod Calanopia americana Dahl in the Newport River estuary (North Carolina, USA, in July 2003). The estuary is shallow and well-mixed, and the study site (34°43N; 76°40W), 1.5 km inside the estuary entrance, is unusual in lying within a gyre where tidal currents are always in the seaward direction. Changes in C. americana vertical abundance were related to spectrally relevant changes in light throughout the diel cycle. Simultaneous measurements of light and zooplankton abundance near the surface (0.5 m depth) and near the bottom (0.5 m above bottom) were made over one 4-h period and two 3-day periods during different phases of the tide. These observations suggest that C. americana undertook twilight DVM in the Newport River estuary; an ascent to the surface occurred at sunset, followed by a descent to near the bottom around midnight, with a second ascent to the surface and then descent to near bottom at sunrise. DVM in C. americana was independent of the tidal cycle, with the initial ascent in the water column at sunset possibly associated with relative rates of irradiance change. Copepod vertical movements were consistent with a night-active endogenous rhythm, and appeared independent of the abundance of predatory chaetognaths, Sagitta spp. In DVM studies with migrators like C. americana that are broadly sensitive to visible wavelengths of light, measuring photosynthetically active radiation may be a reasonable alternative to measuring light in a spectrally relevant photometric unit.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-005-1569-x.Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
Daily growth increments on otoliths were used to age larvae of the pleuronectid fluonders Rhombosolea tapirina Günther and Ammotretis rostratus Günther, collected from Port Phillip Bay, Victoria, Australia, in winter 1984. Daily formation of growth increments was confirmed for R. tapirina by examining the growth of the marginal increment on otoliths of larvae collected over two 24h periods in winter 1985. The first distinctive growth increment was laid down approximately 5 d after hatching, at the onset of external feeding. Growth of flounder larvae was exponential from an early feeding stage to notochord flexion at approximately 30 d after hatching. The specific growth rate was very similar for the two species, at slightly over 4% of standard length per day. Predicted absolute growth rate of R. tapirina larvae increased from approximately 0.10 mm d-1 in early feeding larvae to approximately 0.23 mm d-1 in flexion-stage larvae, compared with 0.12 to 0.28 mm d-1 for A. rostratus larvae of equivalent ages. Exponential models did not adequately describe growth of first-feeding larvae, which was slower than predicted. Growth in the field was faster than that recorded for the same species in the laboratory at higher water temperatures and prey abundances. Otolith growth accelerated markedly in relation to growth in length at the beginning of metamorphosis, causing a significant alteration in the morphology of growth increments, and eventually leading to the cessation of production of visible increments.  相似文献   

14.
Diel vertical migration (DVM) is a common behavior adopted by zooplankton species. DVM is a prominent adaptation for avoiding visual predation during daylight hours and still being able to feed on surface phytoplankton blooms during night. Here, we report on a DVM study using a Video Plankton Recorder (VPR), a tool that allows mapping of vertical zooplankton distributions with a far greater spatial resolution than conventional zooplankton nets. The study took place over a full day–night cycle in Disko Bay, Greenland, during the peak of the phytoplankton spring bloom. The sampling revealed a large abundance of copepods performing DVM (up during night and down during day). Migration behavior was expressed differently among the abundant groups with either a strong DVM (euphausiids), an absence of DVM (i.e., permanently deep; ostracods) or a marked DVM, driven by strong surface avoidance during the day and more variable depth preferences at night (Calanus spp.). The precise individual depth position provided by the VPR allowed us to conclude that the escape from surface waters during daytime reduces feeding opportunities but also lowers the risk of predation (by reducing the light exposure) and thereby is likely to influence both state (hunger, weight and stage) and survival. The results suggest that the copepods select day and night time habitats with similar light levels (~10?9 μmol photon s?1 m?2). Furthermore, Calanus spp. displayed state-dependent behavior, with DVM most apparent for smaller individuals, and a deeper residence depth for the larger individuals.  相似文献   

15.
The abundance, vertical distribution and population structure of two important small calanoid copepod species, Microcalanus pygmaeus (G. O. Sars) and Ctenocalanus citer Heron and Bowman, were studied in the eastern Weddell Sea in summer (January/February 1985), in late winter/early spring (October/November 1986) and in autumn (April/May 1992). The population of Microcalanus pygmaeus consisted mainly of copepodite stages CII and CIII in late winter/early spring and were concentrated between 500 and 200 m depth. In summer, stage CIV was the modal stage and the bulk of the population had ascended above 300 m. In autumn the population structure was bimodal with CI and CV dominating. Most of the population was concentrated between 300 and 200 m. In all investigation periods M. pygmaeus had their maximal concentrations in the thermo-pycnocline. The developmental stages CIII to CV of Ctenocalanus citer formed the bulk of the population in late winter/early spring. In October all developmental stages had their main distribution between 500 and 200 m, except females, which were concentrated in the upper 50 m. In November most of the population occurred between 200 and 50 m. The summer population was concentrated in the upper 50 m, and numbers increased dramatically as the new cohort hatched. Copepodite stages CII and CIII dominated the population at the end of January, while CIV dominated 2 wk later. In autumn, CV was the modal stage. The majority of the population was concentrated in the upper 100 m, but there was an increase in abundance below 300 m compared to summer. Age structure changed with depth with a younger surface population and an older one in deeper water layers. The seasonal change in number of M. pygmaeus is much smaller than that of C. citer; the summer:winter:autumn ratio of the former being about one, whereas the winter:summer/autumn of the latter was about nine. Early copepodite stages and adults of M. pygmaeus occurred throughout all investigation periods. The large proportion of early copepodite stages in April and in mid-October suggests autumn and early to midwinter breeding. Apparently, M. pygmaeus may reproduce and grow year-round or perhaps has a 2-yr life-cycle. In contrast, the dramatic increase in abundance of early copepodite stages of C. citer in summer suggests springtime reproduction.  相似文献   

16.
F. Oya 《Marine Biology》1987,96(2):225-234
The biology of the hippolytid shrimp Heptacarpus futilirostris (Bate) was studied in a tidepool at Kominato, central Japan from January 1983 to June 1984. In males, the relative growth ratio between the third maxilliped length and body length revealed a turning point at approximately 15 mm in body length. Population recruitment was presumed to continue from April to December. The range of body length did not increase from July to October, and thereafter increased rapidly in both sexes up to a maximum range, i.e. from 6 to 29 mm in January. The wide range was presumably due to the simultaneous occurrence of rapid growth with population recruitment. The growth rates of size groups above and below 15 mm were different in the males observed in January. Large males disappeared, probably due to death, and small males participated in reproduction after July. The growth rate increased from late autumn to spring and decreased from summer to early autumn, and was influenced by relative food abundance, especially seaweeds. Two parasitic isopods were identified: Bopyrinella antilensis nipponica in the branchial cavity, and Epiphryxus sp. on the abdomen. It is suggested that parasites have more influence on maturity than on growth. Ovigerous females were found from January to October, with the breeding season peak between April and June. The relationship between female body length (L) and clutch size (N) was expressed by the regression equation: N=5.11 L1.6347 (r=0.57). This species is identified as a multiple breeder. The relatively large number of larvae presumably compensates for the low larval survival rate.  相似文献   

17.
The vertical distribution of the larvae of shelf-dwelling fish species that spawn in the NW Mediterranean Sea in spring was studied in relation to environmental data. Two sampling cycles were carried out at fixed stations on the continental shelf in May and June 1992. Three patterns of larval vertical distribution for the various taxa represented in the samples were observed. The larvae of most species (e.g. Boops boops, Diplodus sargus) were mainly located in the surface layer (10 m), others (e.g. Arnoglossus sp.) had broader distributions in the upper 40 m of the water column, and but a few (e.g. Gobiidae) were present in large concentrations at greater depths. The vertical distribution patterns of the various species showed no variations, despite high hydrographic variability during the study. The vertical distribution of only a few species (e.g. Arnoglossus sp., Crystallogobius linearis and Engraulis encrasicolus) varied over the diel cycle. The possible influence of the vertical distribution of fish larvae on their horizontal distribution patterns is discussed. Received: 10 March 1997 / Accepted: 4 April 1997  相似文献   

18.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

19.
Joint USA/USSR ichthyoplankton surveys off the coasts of Washington, Oregon and northern California during the years 1981 to 1985 sampled more than 120 stations each year, from 5 to 360 km offshore and between Latitude 40° and 48° N, providing information on ontogeny and diel migration of larvae of the Dungeness crab Cancer magister on a scale not studied previously. We developed a maximum likelihood method for estimating abundance and fraction in the neuston at each station from a neuston tow and an oblique bongo tow. Latestage megalopae migrate vertically on a diel basis, with the fraction in the neuston being (on average) 62% at night (19.00 to 08.00 hrs Pacific Standard Time, PST) and 8% during the day (08.00 to 19.00 hrs PST). The hourly pattern of this migration includes a peak in the early evening, possibly another in the early morning, and an intermediate level in the late afternoon. We detected no dependence of vertical migration on cloud cover or sea state. Early-stage megalopae were present in much lower fractions in the neuston, but weakly displayed the same diel pattern of migration. Zoeae appeared to be below the neuston at all times, except for 2 or 3 h in the evening. From an abrupt change in larval stage in samples from a north-south cruise, we concluded that the majority of the larvae metamorphose from zoeae to megalopae over a fairly short time span (2 to 4 wk) at a given latitude. In later cruises, 95% of the larvae were megalopae, indicating that metamorphosis over the study area either occurs at the same time or proceeds from south to north over a time span of less than a month in early spring.  相似文献   

20.
Abstract

Methane, which is an important greenhouse gas, has received less attention regarding its flux in ponds. Small ponds, whose area only occupies approximately 8.6%, comprise the bulk of CH4 efflux from lakes and ponds on a global scale. However, temporal and spatial variability, as well as consequences of CH4 fluxes from ponds, remains unknown. The aim of this study was to examine using 4 field experiments diel methane (CH4) fluxes from a subtropic eutrophic pond in different seasons. For the eutrophic pond, the mean CH4 efflux for all seasons was 1.772?mg/m2/h, and CH4 emissions in summer were approximately three-fold higher than total of winter, spring, and autumn. Methane diffusive emissions were positively correlated with water temperature, dissolved oxygen (DO) and air temperature but negatively related to pH and to the difference between water temperature and air temperature. The diel diffusive CH4 flux among different seasons varied significantly. The CH4 bubble flux did not differ markedly in winter, spring and autumn, but the quantity in summer was significantly different from all other seasons. Bubble is the main pathway for CH4 emissions. The CH4 ebullition flux accounts for 66, 71, 97 and 98% of the total in winter, spring, summer and autumn, respectively. On an annual scale, the CH4 ebullition flux accounts for 77% of the total fluxes (diffusive?+?ebullitive). Our results show that further investigations need to be carried out to probe temporal variability of CH4 fluxes in ponds located in different climate zones for better understanding of the global carbon budget, which is critical to predict future climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号