首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
农林生物质在含铬废水处理中的应用   总被引:1,自引:0,他引:1  
农林生物质作为低成本吸附剂在环境污染治理中日益受到重视。综述了农林生物质在含铬废水处理中的应用研究进展,分析了生物质处理含铬废水的机理、影响因素,指出了生物质法处理含铬废水的发展方向。  相似文献   

2.
电镀废水处理工程改造实例   总被引:1,自引:0,他引:1  
含氰废水采用次氯酸钠氧化,含铬废水采用焦亚硫酸钠还原,然后分别加碱沉淀,出水重金属离子经常超标。改造后,将含铬废水和含氰废水分别预处理,再与前处理废水混合沉淀;上清液和生活污水混合,进入A/O系统进行生化处理,最终混凝沉淀后排放,排放水质可达《DB32/T1072--2007)要求。  相似文献   

3.
通过对某电镀厂生产废水的处理实例,介绍了“阳离子交换-化学法”处理含铬废水的新工艺,不仅使处理后的废水达到国家排放标准,降低了处理费用,而且做到了废水回用,铬回收。  相似文献   

4.
农林生物质是一种成本低、环境友好的重金属废水处理材料,也是受重金属污染环境的修复材料之一.实验讨论了初始pH值、米糠用量、吸附时间对含铬(Ⅵ)水溶液解毒的影响.结果表明,米糠对Cr(Ⅵ)存在吸附作用,同时也有解毒还原能力.100 mL浓度为100 mg/L的含铬溶液,在初始pH为2、米糠用量为3 g、吸附-反应平衡时间7 h的条件下,生物质吸附去除溶液中的铬为14.4%,而原溶液中Cr(Ⅵ)解毒了57.2%,米糠生物质吸附总铬的能力为0.48 mg Cr/g(生物质).米糠生物质有潜在的吸附铬和修复受铬污染环境的利用价值.  相似文献   

5.
含铬废水的治理研究   总被引:8,自引:0,他引:8  
介绍了含铬废水的分离处理研究现状,讨论了各自的应用原理及优缺点。对工程设计和生产工艺提出了一些有益的建议。并对含铬废水处理的发展趋势作了分析和展望。  相似文献   

6.
钢渣预处理含铬废水及其废渣与铬渣的固化   总被引:6,自引:0,他引:6  
用钢渣对含铬废水进行预处理,探讨了钢渣粒度、用量、废水pH值和添加硫酸亚铁还原剂的影响。结果表明,经硫酸亚铁还原处理后再用钢渣处理比单纯用钢渣处理的效果明显提高,采用钢渣/总铬质量比为40的100目钢渣处理经硫酸亚铁还原后的含铬废水,总铬和Cr^6+去除率分别达79%和84%,采用钢渣柱进行的两级淋滤实验进一步表明该方法可作为工业上含铬废水处理的预处理段。处理后的废钢渣同工业铬渣一起进行水泥固化,标准养护20d后固化体表面Cr^6+浸出率、破碎至5mm粒径以下和酸雨淋溶下的浸出液Cr^6+浓度均符合安全标准,可作为普通建材或进行填埋处置。  相似文献   

7.
微电解与化学法处理混合电镀废水的实际应用   总被引:1,自引:0,他引:1  
通过研究得出,利用化学方法处理电镀废水的关键是控制好pH值;另一点是采用微电解方法处理含铬和其它重金属混合废水,在实际工程运作中有良好的效果。  相似文献   

8.
采用4种廉价的生物质材料(水葫芦、柚子皮、木屑、核桃壳)用于餐饮废水的预处理。通过静态烧杯实验,研究了各生物质材料预处理废水的效果及最佳处理条件。结果表明,生物质材料对废水中COD的去除率均在45%以上,油脂吸附量为4~16mg/g,最优吸附材料为水葫芦,COD去除率达65%,油脂吸附量为16mg/g;水葫芦和柚子皮的最佳处理条件为:粒径〈0.2mm,投加量为20g/L,废水pH为4,处理时间为2h,温度为20℃;木屑和核桃壳的最佳实验条件为:粒径〈0.2mm,投加量为28g/L,pH为2,处理时间为2.5h,温度为20℃。生物质对餐饮废水的预处理,为废水中大量有机物和废弃油脂的去除提供了新思路和途径。  相似文献   

9.
实验探究了常温还原铁氧体法处理含铬废水的最优工艺条件,研究了不同亚铁盐及氨氮和COD对处理效果的影响,对沉淀进行了化学分析与材料表征。实验表明,在n(Fe2+)∶n(Cr6+)=6,共沉淀pH=10.0,还原时间为2 min,共沉淀时间为15 min条件下,处理含铬废水可达最好效果,总铬浓度从1 600 mg/L降至1.5 mg/L以下,符合国家《污水综合排放标准》(GB 8978-1996)的要求,实现了常温条件下铁氧体法对含铬废水的处理。对于不同亚铁盐,氯化亚铁处理废水的性能要强于硫酸亚铁,沉降速率快且沉淀致密。一般浓度的氨氮(50 mg/L)与COD(500 mg/L)对处理效果没有明显影响。对沉淀进行酸稳定性分析和XRD表征,确定生成了稳定的含铬复合铁氧体。  相似文献   

10.
柱生物曝气法吸附处理含铬废水   总被引:7,自引:0,他引:7  
利用复合生物吸附剂FY01与活性污泥作为吸附材料,探讨了柱式生物曝气法对高浓度含铬电镀废水的生物吸附效果。研究结果表明,FY01性能稳定,耐进水pH冲击能力较强。当进水pH=2—5、流速为500mL/h时,10gFY01和5g活性污泥联合处理60.4mg/L含铬电镀废水2h后,铬的去除率达78%以上;在4℃冰箱和23—28℃实验室保存50d的FY01对铬的去除分别在78%~83%和77%-84%之间。柱式生物曝气吸附法对含铬废水的处理效果理想,运行稳定。串联处理2000mL总Cr、Cu^2+和COD浓度分别为60.4、4.51和48.2mg/L的电镀废水2h后,去除率分别高达92.1%、99.2%和71.4%。  相似文献   

11.
磁化处理对活性污泥胶体颗粒表面的zeta电位的影响   总被引:1,自引:0,他引:1  
污水处理过程中,二沉池的泥水分离影响整套工艺的效果,用投加混凝剂来降低活性污泥胶体颗粒表面的zeta电位(以下简写活性污泥zeta电位),增加了运行成本.通过磁场磁化可以降低活性污泥zeta电位,达到节省药剂的目的.研究了磁感应强度、磁化时间、磁场位型以及搅拌速率对氧化沟活性污泥zeta电位的影响规律.研究表明,磁化处理能降低活性污泥zeta电位,在磁场中心磁感应强度为0.40 T左右及反应器与磁场平行静置磁化时,zeta电位降低幅度最大,平均在46.5%~51.4%.  相似文献   

12.
The potential of microorganisms to catabolise and metabolise xenobiotic compounds has been recognised as a potentially effective means of toxic and hazardous wastes disposal. Phenol and its derivatives have long been recognised as some of the most persistent chemicals in petroleum refinery wastewaters, with high toxicity even at low concentrations. Biodegradation of these compounds has been recognised as a potential solution for their disposal owing to its cost effectiveness and simplicity. Two species of pseudomonas, P. aeruginosa and P. fluorescence, were studied for their biodegradation potential on phenol present in a refinery wastewater under a batch fermentation process. Phenol was successfully degraded by both species, and there was high positive correlation between phenol biodegradation and microbial growth. The maximum specific growth rate were obtained for both species from the Haldane model. The study revealed the high potential of these local strains, with P. aeruginosa being more effective, and the possibility of using them in bioremediation of petroleum refinery wastewaters.  相似文献   

13.
Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.  相似文献   

14.
The biochemical acidogenic potential (BAP) test is an anaerobic characterization method for wastewater. Fermentable organic fractions are obtained through modeling BAP test results. This method was compared to more common fractionation methods such as settling, coagulation, and respirometry, but no direct relationship was found. Biochemical acidogenic potential testing was thus considered to bring new and complementary information. The settleable matter accounted for approximately 50% of the fermentable matter, with a rate comparable to that of aerobic hydrolysis, suggesting a potential assimilable carbon source that could be liberated in sewers or in anaerobic processes. It was also observed that respirometry could underestimate the amount of fermentable substrates while overestimating that of hydrolyzable matter and of heterotrophic biomass involved in anaerobic processes. The BAP fractions are related to the wastewater capacity to produce volatile fatty acids, which are the main substrates of the micro-organisms responsible for enhanced biological phosphorus removal (EBPR). The potential contribution of the BAP fractionation to assist the design, operation, and modeling of the activated-sludge EBPR processes was discussed.  相似文献   

15.
Warwick P  Hall A  Pashley V  Bryan N 《Chemosphere》2001,45(3):303-307
Zeta potential measurements have been performed on colloidal humate in the presence of differing concentrations of sodium ions at pH = 6.0. A series of calculations has been performed in which the radius of the humic colloid was varied until the predicted surface potential was equal to the experimentally determined zeta potential. The results of the calculations showed that as the ionic strength increases, the apparent radius of the colloid decreases. Similar calculations in which a model colloid was treated as a rigid sphere, i.e., the radius of the colloid was kept constant, failed to simulate the observed zeta potential measurements.  相似文献   

16.
Sodium borohydride reduction of individual polybrominated diphenyl ethers   总被引:1,自引:0,他引:1  
Granelli L  Eriksson J  Bergman Å 《Chemosphere》2012,86(10):1008-1012
Many chemicals in use today lack appropriate documentation on their environmental properties, fate, and effects. To counteract this lack of documentation it is vital to thoroughly investigate a compound’s fate in the environment before it comes into use. The present study is describing a novel method for assessing the reduction potential of polybrominated diphenyl ethers (PBDEs), as a part of a project aimed to create an experimental model for determination of chemical persistence. The reductive transformation of 15 PBDE congeners using sodium borohydride was determined. Pseudo-first-order reaction rate constants of the transformations were determined by monitoring the disappearance of the investigated congeners. The reductions lead primarily to formation of lower brominated PBDEs. Each PBDE congener was tested in a total of ten replicates which showed a relative standard deviation of 31% or less. The decaBDE, BDE-209 was approximately 3 times as prone to reductive transformation as BDE-207. The three nonaBDEs, BDE-206, BDE-207, and BDE-208, showed similar reductive potential. The reactivity of the tested octaBDEs was quite variable, from 5% to 24% of the reactivity of BDE-209 for BDE-196 and BDE-198, respectively. The heptaBDEs studied were in the range of the less reactive octaBDEs, except for BDE-181 which was as high as 13% of the reactivity of BDE-209. The results presented give a method for measuring the propensity of PBDEs, and possibly similar compounds, to undergo reductions. They indicate a potential route to a vital piece of information in the assessment of environmental persistence of chemicals.  相似文献   

17.
Tracer tests were conducted to evaluate the effect of a complexing sugar flush (CSF) on in-situ biodegradation potential at a site contaminated by jet fuel, solvents, and other organic compounds. Technical-grade hydroxypropyl-beta-cyclodextrin was used during the CSF study, which was conducted in a hydraulically isolated cell emplaced in a surficial aquifer. In-situ biodegradation potential was assessed with the use of tracer tests, which were conducted prior to and immediately following the CSF study. Ethanol, hexanol, and benzoate were used as the biodegradable tracers, while bromide was used as a nonreactive tracer. The results indicate that the biodegradation of benzoate was similar for both tracer tests. Conversely, the biodegradation of ethanol (23% increase) and hexanol (41% increase) was greater for the post-CSF tracer test. In addition, analysis of core samples collected from within the test cell indicates that the population density of aerobic jet-fuel degraders increased in the vicinity of the injection wells during the CSF. These results indicate that the cyclodextrin flush did not deleteriously affect the indigenous microbial community. This study illustrates that tracer tests can be used to evaluate the impact of remediation activities on in-situ biodegradation potential.  相似文献   

18.
Yang CF  Lee CM  Wang CC 《Chemosphere》2006,62(5):709-714
Many chlorophenols tend to persist in the environment, and they may become public health hazards. Among chlorophenols, pentachlorophenol (PCP) is a priority pollutant that has been used widely as a general biocide in commercial wood treatment. Owing to the rapid industrial growth, serious soil and water pollutions by chlorophenols has been reported in Taiwan. In this study, 10 indigenous PCP-degrading bacterial strains were isolated from a PCP-degrading mixed culture, and the potential of both the pure and mixed cultures for PCP degradation compared. Moreover, the physiological characteristics and optimum growth conditions of the PCP-degrading bacteria were investigated. One of the isolated bacterial strains with good potential for PCP degradation was characterized and identified as Sphingomonas chlorophenolica by 16S rDNA gene analysis. The result of the optimum growth temperatures revealed that this organism was a mesophile. The optimum pH for PCP removal by S. chlorophenolica was between 6.9 and 7.6. Increase in concentration of PCP has a negative effect on the biodegradation potential of S. chlorophenolica and PCP concentration above 600 mg l(-1) was inhibitory to its growth. The results of this study indicate that this S. chlorophenolica strain has a better potential for PCP degradation compared to the enriched mixed culture. The physiological characterization of the isolates also indicates the possible application of this strain for bioremediation of sites contaminated with PCP.  相似文献   

19.
Abstract

A simple technique was demonstrated for determining the potential for synthetic organics to stress microbial populations. Oxidized Crowley and Cecil soil materials were amended with varying concentrations of 2,4‐D and methyl parathion, flooded, and then analyzed for changes in pH, redox potential, and levels of soluble plus exchangeable Fe, Mn, and Zn, all of which may be directly or indirectly influenced by the activity of soil microorganisms. At the concentrations tested (up to 75 ppm), there was little effect of 2,4‐D, but methyl parathion apparently did affect microbial activity contributing to changes in the measured soil properties upon flooding. This approach may be a useful technique for screening various compounds for their potential to stress microbial activity that, for many researchers, would be easier than direct observations of microbial parameters such as population numbers and classifications, and enzyme levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号