首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT: An automated extraction of channel network and sub-watershed characteristics from digital elevation models (DEM) is performed by model DEDNM. This model can process DEM data of limited vertical resolution representing low relief terrain. Such representations often include ill-defined drainage boundaries and indeterminate flow paths. The application watershed is an 84 km2 low relief watershed in southwestern Oklahoma. The standard for validation is the network and subwatershed parameters defined by the blue line method on USGS 7.5–minute topographic maps. Evaluation of the generated and validation networks by visual comparisons shows a high degree of correlation. Comparison of selected network parameters (channel length, slope, drainage density, etc.) and of drainage network composition (bifurcation, length, slope, and area ratios) shows that, on the average, the generated parameters are within 5 percent of those derived from the validation network. The largest discrepancies were found for the channel slope values. The results of this application demonstrate that DEDNM effectively addresses network definition problems often encountered in low relief terrain and that it can generate accurate network and subwatershed parameters under those conditions.  相似文献   

2.
ABSTRACT: ERTS-1 satellite imagery has been evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado; and (3) portions of the Middle Atlantic States Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales Land use information can be usefully extracted for watersheds as small as 30 mi2(78 km2) in area. Improved drainage network and density information is obtained from ERTS-1 imagery in dissected areas such as Southwestern Wisconsin, but in heavily vegetated areas (Middle Atlantic States) or areas with little physical relief (Eastern Colorado) low order streams are difficult to detect and the derived drainage densities are significantly smaller than those obtained from standard maps. It is concluded that ERTS-1 imagery can be employed to advantage in mean annual runoff prediction techniques and in providing or maintaining land use information used in the calibration and operation of watershed models.  相似文献   

3.
ABSTRACT: The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.  相似文献   

4.
Estimation of stream channel heads is an important task since ephemeral channels play a significant role in the transport of sediment and materials to perennial streams. The slope‐area method utilizes digital elevation model (DEM) and related information to develop slope‐area threshold relationships used to estimate the position of channel heads in the watershed. A total of 162 stream channel heads were mapped across the three physiographic regions of Alabama, including the Southwestern Appalachians (51), Piedmont/Ridge and Valley (61), and Coastal Plains (51). Using Geographic Information System and DEM, the local slope and drainage area for each mapped channel head was calculated and region‐specific models were developed and evaluated. Results demonstrated the local slope and drainage area had an inverse and strong correlation in the Piedmont/Ridge and Valley region (r2 = 0.71) and the Southwestern Appalachian region (r2 = 0.61). Among three physiographic regions, the weakest correlation was observed in the Coastal Plain region (r2 = 0.45). By comparing the locations of modeled channel heads to those located in the field, calculated reliability and sensitivity indices indicated model accuracy and reliance were weak to moderate. However, the slope‐area method helped define the upstream boundaries of a more detailed channel network than that derived from the 1:24,000‐scale National Hydrography Dataset, which is commonly used for planning and regulatory purposes.  相似文献   

5.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   

6.
ABSTRACT: The purpose of this paper is to investigate the sensitivity of a hydrologic models to the type of DEM used. This was done while modeling basin water quality with 1:24,000 and 1:250,000 U.S. Geological Survey DEMs as input to model hydro‐logical processes. The manner in which the model results were sensitive to the choice of raster cell size (scale) is investigated in this study. The Broadhead watershed, located in New Jersey, USA, was chosen as a study area. Curve numbers were estimated by a trial and error to match simulated and observed total discharge. Monthly runoff for the watershed was used in the calibration process. Higher runoff volumes were simulated by the model when the 1:24,000 DEM were used as input data, probably due to the finer resolution which simulated increased average slope and hence higher estimated runoff from the watershed. As the simulated slope of the watershed is flatten with the 1:250,000 DEM, the response of stream flow was delayed and simulated less runoff volume.  相似文献   

7.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   

8.
ABSTRACT: The widely available USGS 7.5‐minute Digital Elevation Model (DEM) has a cell size of approximately 30 m × 30 m. This high resolution topographic information is impractical for many applications of distributed hydrologic and water quality models. In this study, cells were aggregated into coarse‐resolution areal units, termed grids, and a method to approximate flow direction for coarse‐resolution grids from 30 m DEM cells was developed. The method considers the flow path defined from the fine‐resolution DEM in determining a grid's flow direction and makes flow directions for grids closely follow the flow pattern suggested by the DEM. The aggregation method was applied to a DEM of Goodwater Creek, a nearly flat watershed that is located in central Missouri. The drainage networks derived for different levels of cell aggregations showed that grid aggregates of the Goodwater Creek watershed provided an adequate representation of the landscape topography.  相似文献   

9.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

10.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   

11.
ABSTRACT: This paper discusses a computer program which extracts a number of watershed and drainage network properties directly from digital elevation models (DEM) to assist in the rapid parameterization of hydrologic runoff models. The program integrates new and established algorithms to address problems inherent in the analysis low-relief terrain from raster DEMs similar to those distributed by the U.S. Geological Survey for 7.5-minute quadrangles. The program delineates the drainage network from a DEM, and determines the Strahler order, total and direct drainage area, length, slope, and upstream and downstream coordinates of each channel link. It also identifies the subwatershed of each channel source and of the left and right bank of each channel link, and assigns a unique number to each network node. The node numbers are used to associate each subwatershed with the channel link to which it drains, and can be used to control flow routing in cascade hydrologic models. Program output includes tabular data and raster maps of the drainage network and subwatersheds. The raster maps are intended for import to a Geographical Information System where they can be registered to other data layers and used as templates to extract additional network and subwatershed information.  相似文献   

12.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

13.
ABSTRACT: The objective of this work is to determine the effects of extension of a stream network through land drainage activities during the late 1800s on the hydrologic response of a watershed. The Mackinaw River Basin in Central Illinois was chosen as the focus and the pre‐land and post‐land drainage activity hydrologic responses were obtained through convolution of the hill slope and channel responses and compared. The hill slope response was computed using the kinematic wave model and the channel response was determined using the geomorphologic instantaneous unit hydrograph method. Our hypothesis was that the hydrologic response of the basin would exhibit the characteristic effects of settlement (i.e., increases in peak discharges and decreases in times to peak). This, indeed, is what occurred; however, the increase in peak discharges diminishes as scale increases, leaving only the decrease in times to peak. At larger scales, the dispersive effects of the longer hill slope lengths in the pre‐settlement scenario seem to balance the depressive effects of the longer path lengths in the post‐settlement scenario, thus the pre‐settlement and post‐settlement peak discharges are approximately equivalent. At small scales, the dispersion caused by the hill slope is larger in the pre‐settlement case; thus, the post‐settlement peak discharges are greater than the pre‐settlement.  相似文献   

14.
ABSTRACT: The Gunnison River drains a mountainous basin in western Colorado, and is a large contributor of water to the Colorado River. As part of a study to assess water resource sensitivity to alterations in climate in the Gunnison River basin, climatic and hydrologic processes are being modeled. A geographic information system (GIS) is being used in this study as a link between data and modelers - serving as a common data base for project personnel with differing specialties, providing a means to investigate the effects of scale on model results, and providing a framework for the transfer of parameter values among models. Specific applications presented include: (1) developing elevation grids for a precipitation model from digital elevation model (DEM) point-elevation values, and visualizing the effects of grid resolution on model results; (2) using a GIS to facilitate the definition and parameterization of a distributed-parameters, watershed model in multiple basins; and (3) nesting atmospheric and hydrologic models to produce possible scenarios of climate change.  相似文献   

15.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

16.
ABSTRACT: To make a distributed rainfall-runoff model, it is very important to build a model of topographic surface of a basin which takes account of the direction of water flow. In this paper, a geographic information system in hydrologic modeling, the BGIS (Basin Geomorphic Information Systems) are presented for modeling a river basin using a TIN-DEM (Triangulated Irregular Network - Digital Elevation Model) data structure. The BGIS have two core systems, which are the TIN-DEM generating system and the topographic analysis system. In the TIN-DEM generating system, landscapes are modeled as a set of contiguous non-overlapping terangular facets whose vertices are made up of points on a regular grid DEM and on river segments. These triangular facets are subdivided, if needed, so that each of them has only one side through which water flows out. The TIN-DEM generating system is made up of four modules, (1) a module for generating triangles from a grid DEM, (2) a module for getting rid of pits, (3) a module for joining discontinuous valley segments to a channel network, (4) a module for subdividing triangular facets. In the topographic analysis system, using datasets processed with the TIN-DEM generating system, a watershed source area for any segments in a stream network are delineated automatically, and topographic attributes of slopes, aspects, flow path lengths and upslope contributing areas are computed.  相似文献   

17.
A case study was conducted on the forest ecosystem in the Baishuijiang River basin of China to reveal the influences of environmental factors and human disturbance on the floristic characteristics and biodiversity patterns. Field surveys of the floristic composition, environmental factors, and disturbance factors were conducted along an elevation gradient, and the relationships between biodiversity pattern and environmental factors were analyzed using CCA (canonical correspondence analysis). The results showed that the floristic composition of higher plants consisted of 197 families, 796 genera, 2165 species, 19 subspecies, 239 varietas, and 12 forma, and it was characterized by the multi-geographic composition and by the transition from tropical to temperate zones. Along an elevation gradient, the variations in α and β diversity were best described by a bimodal curve, and the peak values occurred at middle elevations. The CCA indicated that the elevation had the greatest influence on the biodiversity pattern, followed by the topographic index, slope direction, slope, slope position, slope shape, and vegetation coverage. In addition, human disturbance has greatly impacted the floristic composition and biodiversity patterns, and the biodiversity indices were higher with intermediate disturbance at middle elevations compared to higher and lower disturbances at low and high elevations, respectively. This reflected a disturbance–diversity pattern and thus revealed the obvious importance to maintain the intermediate disturbance for biodiversity conservation.  相似文献   

18.
ABSTRACT: Ten topographic analysis methods were employed to estimate watershed mean slopes for 13 small forested watersheds (32 to 131 mi2) in East Texas. Of the ten methods employed, the mean slope curve is the most accurate but also the most tedious and laborious one. The method can be simplified by measuring only the lengths of five contours and the areas between these contours within the watershed with little loss of its accuracy. Watershed slopes estimated by the contour length method, the grid contour method, the systematic slope sampling method, and the simplified contour length method are satisfactory for general purposes and relatively simple. The watershed circumference-stream length method, the length-width axis method, the Justin method, and the regression plane method are not suitable for estimating watershed slopes in East Texas without modification.  相似文献   

19.
ABSTRACT: In this study, remotely sensed data and geographic information system (GIS) tools were used to estimate storm runoff response for Simms Creek watershed in the Etonia basin in northeast Florida. Land cover information from digital orthophoto quarter quadrangles (DOQQ), and enhanced thematic mapper plus (ETM+) were analyzed for the years 1990, 1995, and 2000. The corresponding infiltration excess runoff response of the study area was estimated using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service Curve Number (NRCS‐CN) method. A digital elevation model (DEM)/GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. A comparison of predicted to observed stream response shows that the model predicts the total runoff volume with an efficiency of 0.98, the peak flow rate at an efficiency of 0.85, and the full direct runoff hydrograph with an average efficiency of 0.65. The DEM/GIS travel time model can be used to predict the runoff response of ungaged watersheds and is useful for predicting runoff hydrographs resulting from proposed large scale changes in the land use.  相似文献   

20.
Regional patterns of soil organic carbon stocks in China   总被引:8,自引:0,他引:8  
Soil organic carbon (SOC) is of great importance in the global carbon cycle. Distribution patterns of SOC in various regions of China constitute a nation-wide baseline for studies on soil carbon changes. This paper presents an integrated and multi-level study on SOC stock patterns of China, and presents baseline SOC stock estimates by great administrative regions, river watersheds, soil type regions and ecosystem. The assignment is done by means of a recently completed 1: 1,000,000 scale soil database of China, which is the most detailed and reliable one in China at the present time. SOC densities of 7292 soil profiles collected across China in the middle of the 1980s were calculated and then linked to corresponding polygons in a digital soil map, resulting in a SOC Density Map of China on a 1: 1,000,000 scale, and a 1 km x 1 km grid map. Corresponding maps of administrative regions, river watersheds, soil types (ST), and ecosystems in China were also prepared with an identical resolution and coordinate control points, allowing GIS analyses. Results show that soils in China cover an area of 9.281 x 10(6)km(2) in total, with a total SOC stock of 89.14 Pg (1 Pg=10(15)g) and a mean SOC density of 96.0 t C/ha. Confidence limits of the SOC stock and density in China are estimated as [89.23 Pg, 89.08 Pg] and [96.143 t C/ha, 95.981 t C/ha] at 95% probability, respectively. The largest total SOC stock (23.60 Pg) is found in South-west China while the highest mean SOC density (181.9 t C/ha) is found in north-east China. The total SOC stock and the mean SOC density in the Yangtze river watershed are 21.05 Pg and 120.0 t C/ha, respectively, while the corresponding figures in the Yellow river watershed are 8.46 Pg and 104.3 t C/ha, respectively. The highest total SOC stocks are found in Inceptisols (34.39 Pg) with SOC density of 102.8 t C/ha. The lowest and highest mean SOC densities are found on Entisols (28.1 t C/ha), and on Histosols (994.728.1 t C/ha), respectively. Finally, the total SOC stock in shrub and forest ecosystem classes are 25.55 and 21.50 Pg, respectively; the highest mean SOC density (209.9 t C/ha) was recorded in the wetland ecosystem class and the lowest (29.0 t C/ha) in the desert ecosystem class. Among five forest ecosystem types, Evergreen conifer forest stores the highest SOC stock (6.81 Pg), and Deciduous conifer forest shows the highest SOC density (225.9 t C/ha). Figures of SOC stocks stratified by Administrative regions, river watersheds, soil types and ecosystem types presented in the study may constitute national-wide baseline for studies of SOC stock changes in various regions in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号