首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Three isopod species (Crustacea: Isopoda), commonly found in the intertidal and supratidal zones of the North American Pacific coast, were studied with respect to symbiotic microbiota in their midgut glands (hepatopancreas). Ligia pallasii (Oniscidea: Ligiidae) contained high numbers of microbial symbionts in its hepatopancreatic caeca. Numbers of endosymbionts were strongly reduced by ingestion of antibiotics. By contrast, the hepatopancreas of Idotea wosnesenskii (Valvifera: Idoteidae) and Gnorimosphaeroma oregonense (Sphaeromatidea: Sphaeromatidae) did not contain any microbiota. Results of feeding experiments suggest that microbial endosymbionts contribute to digestive processes in L. pallasii, the most terrestrial of the three isopods that we studied. The acquisition of digestion-enhancing endosymbionts may have been an important evolutionary step allowing isopods to colonize terrestrial habitats where relatively indigestible leaf litter is the primary food source. By contrast, the ability to digest phenolic compounds was most developed in one of the more marine species, suggesting that this trait may have evolved independently in isopod species that consume a phenolic-rich diet, whether in marine habitats or on land. Received: 28 August 2000 / Accepted: 8 December 2000  相似文献   

2.
Rafting on floating objects is a common dispersal mechanism for many marine invertebrates. In order to identify adaptations to the rafting life style, we compared behavioural and metabolic characteristics of two isopods, the obligate rafter Idotea metallica and the facultative rafter Idotea baltica. In laboratory experiments, I. metallica showed low locomotive activity and a tight association to the substratum. Idotea baltica, in contrast, was more active with more frequent excursions in the surrounding water column. Oxygen consumption rates were similar in both species. Idotea metallica fed on zooplankton making this species widely independent of autochthonous food resources of the raft. Feeding rates and digestive enzyme activities were low in I. metallica. Reduced egestion rates may indicate slow gut passage and, thus, efficient resorption of nutrients. Efficient food utilization and the ability to accumulate high amounts of storage products, i.e. lipids, indicate a possible adaptation of I. metallica to low food availability or starvation. The feeding behaviour of I. baltica, in contrast, was more herbivorous and appeared wasteful and inefficient. Low lipid contents in I. baltica also indicate poor storage reserves. Thus, I. baltica requires a permanent access to food.  相似文献   

3.
R. Rosa  M. Nunes 《Marine Biology》2002,141(6):1001-1009
The objectives of the present study were to characterize the changes in the proximate chemical composition, lipid classes, fatty-acid profiles, glycogen and cholesterol contents of the muscle, ovary and hepatopancreas of Nephrops norvegicus (L.), during the reproduction cycle of this species. The gonadosomatic index increased significantly in May and June and during maturation, suggesting that spawning may start in late spring or summer. The hepatosomatic index also increased throughout the ovarian maturation, suggesting that the hepatopancreatic resources are not depleted. Positive correlations between lipid levels in the ovary and the gonadosomatic index (r=0.51, P<0.05) and the hepatopsomatic index (r=0.27, P<0.05) were found. In fact, ovarian lipid levels increased with maturation, but no concomitant decrease occurred in hepatopancreatic lipids. The muscle showed very low lipid levels (mainly polar lipids), presenting a significant increase during May and June (P<0.05). Higher proportions of neutral lipids, mainly triacylglycerols, were observed in the ovary and the hepatopancreas. Since both ovarian and hepatopancreatic cholesterol increased with maturation, the mobilization of hepatopancreatic cholesterol stores to build up ovarian cholesterol was not clear. On the other hand, protein and glycogen contents in the muscle, ovary and hepatopancreas did not vary as a function of ovary maturity stage. Among the various tissues analysed, the glycogen was mainly stored in the hepatopancreas and to a lesser extent in the muscle. In both ovary and hepatopancreas the major fatty acids were 16:0, 18:1(n-7), 18:1(n-9), 20:5(n-3) and 22:6(n-3), and significant increases (P<0.05) in the levels of monounsaturated and polyunsaturated fatty acids were observed in the ovary during sexual maturation, which indicates these compounds are the major sources of energy during embryonic and early larval development. It was evident that reproduction has profound effects upon the biochemistry of this species, because there are large associated energy costs, owing to the increase in biosynthetic work, which will support the lecithotrophic strategy of the embryos and first larval stages.  相似文献   

4.
Many prior studies of nitrogenous waste excretion in marine fish have examined excretion patterns for short time periods, and with relatively coarse sampling schemes (e.g., an initial and a final sample point). Recent studies of a ureotelic marine fish (the gulf toadfish, Opsanus beta) have demonstrated that urea excretion in this species occurs in brief but massive bursts, lasting from 0.5 to 3 h, and often only once per day. The present study sought to determine if prior sampling protocols may have underestimated the amount of urea being excreted by marine fish. A survey of 16 marine species (the teleosts: Myoxocephalus octodecemspinosus, Scophthalamus aquosa, Cyclopterus lumpus, Lophius americanus, Aprodon cortezianus, Cymatogaster aggregatus, Parophrys vetulis, Microstomus pacificus, Hippoglossoides elassodon, Bathyagonus nigripinnus, Ophiodon elongatus, Hemilepidatus spinosus, Icelinus terrius; the elasmobranch: Raja rhina; and the hagfish: Eptatretus stoutii) was undertaken for ammonia-N and urea-N excretion using a long sampling period (48 h) and hourly sample collection. Apart from the obvious exception of an elasmobranch, ammonia excretion was confirmed to be predominant in marine fish, with urea excretion constituting between 1.4 and 23.8% of the total of ammonia plus urea excreted. Notably, no pulses of urea excretion were detected. Despite the relatively low level of urea excretion, expression of urea transporter-like mRNA (detected using the toadfish urea transporter, tUT, cDNA as a probe) was discovered in gills of many of the species surveyed for nitrogen excretion patterns, although no signal was detected in the hagfish. These results suggest that urea excretion takes place through a specific transport pathway. Finally, more detailed analysis of nitrogen excretion in one of the surveyed species, the plainfin midshipman (Porichthys notatus) demonstrates that "total" nitrogen excretion estimated by summing ammonia and urea excretion underestimates true total nitrogen excretion by 37-51%.  相似文献   

5.
The morphological and physiological mechanisms by which marine herbivores assimilate energy and nutrients from primary producers and transfer them to higher trophic levels of reef ecosystems are poorly understood. Two wide-ranging Caribbean fishes, the dusky damselfish, Stegastes dorsopunicans, and the threespot damselfish, S. planifrons, defend territories on patch reefs in the Archipelago de San Blas, Republic of Panama. We examined how relative intestine length and retention time influence digestion and absorption of energy and nutrients in these fishes. The dusky damselfish has a relative intestine length (RIL=intestine length/standard length) of 1.2 and a Zihler index {ZI=intestine length (mm)/10[mass(g)1/3]} of 3.4. These values are significantly lower (PRIL=PZI<0.0001) than those for the threespot damselfish (3.0 and 8.2, respectively). Both RIL and ZI for both species fall well below previously published values for other herbivorous pomacentrids, and may reflect their primary food resource at San Blas (diatoms). Energy-rich diatoms may be easier to digest than refractory macroalgae characteristic of diets of many herbivorous fishes (RIL range: 2-20). Despite differences in RIL and ZI between these two species, gut retention time is the same (P>0.05) for both dusky (6.6 h) and threespot damselfish (6.5 h). Thus, food travels the length of the threespot damselfish intestine ~2.5 times faster than it does in the dusky damselfish intestine. Levels of protein, carbohydrate, and lipid are significantly (0.003<P<0.030) higher in the feces of dusky damselfish than in the feces of threespot damselfish, when both species were fed a natural diet of benthic diatoms collected from damselfish territories. This indicates threespot damselfish have a greater nutrient-specific and total assimilation efficiency than do dusky damselfish. Furthermore, when fed an artificial pellet diet, protein absorption efficiency differed significantly (P=0.014) between species; threespot damselfish absorbed 98.3% of dietary protein, whereas dusky damselfish absorbed 96.4% of dietary protein.  相似文献   

6.
G. Piniak 《Marine Biology》2002,141(3):449-455
Symbiotic temperate corals can supplement prey capture by the coelenterate host with autotrophic carbon production by endosymbiotic zooxanthellae. To test the relationship between heterotrophic consumption and photosynthetic energy, prey capture by symbiotic and aposymbiotic specimens of the temperate scleractinian coral Oculina arbuscula (Verrill) was measured in January-April 2001. Corals were tested in a laboratory flume at five flow speeds, using Artemia franciscana cysts and nauplii as prey. Per-polyp capture rate and feeding efficiency were independent of symbiotic condition. Capture rate increased with flow speed, while capture efficiency declined. The location of capture shifted from the upstream to downstream side of the coral as flow speed increased. Differences in capture rate, location, and feeding efficiency for cysts and live brine shrimp nauplii were likely due to prey size rather than swimming ability.  相似文献   

7.
We re-evaluated the "diel feeding hypothesis" by measuring diel variation in starch, protein, and floridoside in three algal "types" collected from a fringing coral reef at Lizard Island, Great Barrier Reef, Australia. Samples of two species of rhodophyte algae, Gracilaria arcuata and Acanthophora spicifera, and the turf assemblage from the territories of the herbivorous pomacentrid Stegastes nigricans were collected at four time periods through the day: 0630-0730, 1000-1100, 1330-1430, and 1630-1730 hours. We also measured the ability of several species of marine fish (the herbivores Acanthurus nigricans, A. lineatus, A. olivaceus, and Parma alboscapularis and the detritivore Ctenochaetus striatus) to hydrolyse floridoside by estimating !-galactosidase activity in tissue from the anterior intestine. We detected no diel pattern in protein content of the algae but found a significant steady increase in starch content throughout the day. Floridoside content increased in the morning and decreased in the afternoon, a pattern that may be driven by midday photoinhibition of the algae. All the fishes tested could utilise floridoside. Our results support the diel feeding hypothesis. Although floridoside content decreased in the afternoon, our results suggest floridoside was used during the day by the algae to synthesise starch. Thus the algae increased in nutritional value until photoinhibition occurred at midday then subsequently maintained their nutritional value during the afternoon. This pattern of algal nutrients increasing to a midday peak and remaining relatively constant throughout the afternoon correlates well with the diel feeding pattern in many species of marine herbivorous fish.  相似文献   

8.
Analyses of gut contents of freshly collected Ligia pallasii (Brandt) showed that the principal foods were encrusting diatoms, insect larvae, occasional members of the same species, and a variety of red and green seaweeds growing in the upper interiidal tidepool habitat. L. pallasii prefers to eat the green seaweed Ulva sp., and the brown alga Nereocystis luetkeana, when given a choice between several seaweeds, although neither of these forms is normally accessible to the isopods. The absorption (assimilation) of food-energy was 78% on a diet of Ulva and 55 to 76% on a diet of N. luetkeana—representative values for an algivorous invertebrate. A correlation analysis on the relationship of feeding preference of L. pallasii with calorific value of 7 potential seaweed foods suggested that feeding preference in this species is related to factors other than energy content of the food. Food preferences of invertebrates are discussed in relation to calorific value, accessibility, and to various nutritional factors.  相似文献   

9.
The effects of cadmium (3CdSO4·8H2O), zinc (ZnSO4·7H2O) and lead [Pb (NO3)2] on mortality, and cadmium, zinc and mercury (HgCl2) on osmoregulation, have been recorded for marine and estuarine species of isopods (Crustacea). The marine species studied were Idotea baltica, I. neglecta, I. emarginata and Eurydice pulchra, which were adapted to 100, 80, 60 and 40% sea water (SW) (100% SW э 34‰ S). The estuarine species used were Jaera albifrons sensu stricto and J. nordmanni, which were adapted to 100, 50, 10 and 1% SW. Both groups of isopods have low mortalities in 100% SW with 10 and 20 ppm of cadmium, zinc and lead, but a decrease in salinity caused an increase in the toxicities of these metals and reduced the LT50 values (time, in hours, to 50% mortality). Mortalities at 10°C were generally higher than those recorded at 5°C. Cadmium had no significant effect on the osmoregulation of I. baltica and I. emarginata in 100 and 80% SW at 5°C, but this metal significantly lowered the blood osmotic concentration of I. neglecta in 80% SW. Zinc did not alter the haemolymph osmotic concentration of I. neglecta in 100 and 80% SW, but significantly lowered the blood osmotic concentration of I. baltica in 100% SW. Cadmium, zinc and mercury also significantly altered the osmoregulatory ability of J. albifrons in dilute saline.  相似文献   

10.
Suspension-feeding bivalves are adapted to use a highly variable mixture of particles by sorting them before and after ingestion. Postingestive sorting in bivalves has been confirmed for several bivalve species, but few studies have attempted to isolate the factors influencing postingestive selection among different particles presented simultaneously. The ability of the sea scallop, Placopecten magellanicus (Gmelin), to sort a mixture of organic (14C-labeled dinoflagellates, Prorocentrum minimum) and inorganic (51Cr-labeled beads, diameter 16-18 µm) particles of similar size and shape within the stomach was examined. The study was carried out in August 1997 using scallops collected near Deer Island, New Brunswick, Canada. Sorting of the two particle types was measured by dissecting the scallops at intervals after feeding and comparing the 14C:51Cr ratios within the stomach, digestive gland, and feces. The 14C:51Cr ratio in the stomach decreased over time, indicating that sea scallops were sorting organic from inorganic particles. The ability of P. magellanicus to sort particles solely on the basis of chemical properties was tested in a second study by presenting them with a mixture of protein-coated and uncoated beads of two different colors. This study was carried out in February 2000 using scallops collected near Maces Bay, New Brunswick, Canada. Gut retention times of the two types of beads were measured using flow cytometry. Scallops retained protein-coated beads in the gut longer than uncoated beads, indicating postingestive selection by chemical properties. This study provides the first evidence for simultaneous postingestive sorting by bivalves of particles based solely on chemical properties. This would potentially enable P. magellanicus to preferentially retain particles of higher food quality longer than those of poor quality, thereby enhancing digestive efficiency.  相似文献   

11.
We assessed the effects of anoxia exposure and recovery on glycogen synthesis and mobilization, glucose uptake, and on the enzymes that control carbohydrate metabolism in the hepatopancreas of Chasmagnathus granulata crabs receiving either a carbohydrate-rich (HC) or a high-protein diet (HP). In both dietary groups, anoxia led to a reduction in glucose uptake and in glycogen synthesis, and to an increase in hepatopancreas glycogen mobilization and in hemolymph glucose concentration. During the first 4 h of exposure to anoxia, total glycogen phosphorylase (GPT) and a form activity increased in HP and HC crabs, leading to a decrease in hepatopancreas glycogen concentration. During recovery, HP and HC crabs rapidly restored the hemolymph glucose levels to pre-anoxia concentrations. In HC crabs, incorporation of 14C from glucose into glycogen increased gradually after 12 h in normoxia, leading to restoration of glycogen concentration. Also during recovery, the ratio of glycogen synthase I (GSI) to glycogen phosphorylase a (GPa) increased in the HC group. In turn, recovering HP crabs had two peaks of glycogen synthesis, related with two peaks in the ratio of GSI to GPa. Consequently, no mobilization of 14C-glycogen occurred in recovering HP animals. Anoxia in C. granulata induces a marked decrease in the synthesis of carbohydrate reserves that is accompanied by an increase in glycogen mobilization and in circulating glucose levels. During the recovery period, there is an activation of endergonic processes which cause a decrease in hemolymph glucose levels. In C. granulata, glycogen metabolism seems to be controlled by the ratio of the GSI form to the GPa form. In field conditions, theses changes in the metabolic pattern may result from environmental PO2 availability. In the winter, C. granulata stays in its holes, where environmental PO2 falls to zero. The carbohydrate or protein content of the diets administrated to the crabs seem to induce different metabolic adjustments during anoxia and recovery.  相似文献   

12.
Natural diets of vertically migrating zooplankton in the Sargasso Sea   总被引:1,自引:0,他引:1  
The feeding preferences of three common diel vertically migrating zooplankton were investigated from December 1999 to October 2000 at the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) station in the Sargasso Sea. Gut content analysis of the copepods Pleuromamma xiphias (Giesbrecht) and Euchirella messinensis (Claus) and of the euphausiid Thysanopoda aequalis (Hansen) indicated that all three species fed on a wide variety of phytoplankton, zooplankton, and detrital material. Diet changes generally reflected seasonal trends in phytoplankton community structure. However, species-specific feeding preferences and differences in feeding selectivity among the three species were evident, and in general agreement with feeding habits predicted from the analysis of mouthpart morphology. The euphausiid T. aequalis fed equally on more different food types compared to both copepod species. The copepod P. xiphias consumed a diverse assemblage of phytoplankton from late winter through the summer (78-93% of gut items, by number, were phytoplankton) and based its diet more strongly on carnivorous feeding in autumn and early winter (31% and 61% of gut items were phytoplankton, respectively). E. messinensis showed the greatest feeding specialization, with a strong preference for pennate diatoms in winter and spring and for coccolithophorids during late summer and fall (constituting 67-93% of gut items by number). All three species consumed diatoms more than other phytoplankton taxa, even though diatoms form only a small fraction of the phytoplankton biomass in the Sargasso Sea. Although the majority of gut items identified were phytoplankton cells, the relative biomass contribution of these small cells may be lower than that of zooplankton and detritus. Zooplankton on which the three species primarily preyed were protozoans and crustaceans, but also included other metazoans such as chaetognaths and cnidarians. Marine snow was also an important component of the diet in all three species, with typically >50% and rarely <20% of the gut content being olive-green debris. Marine snow from larvacean houses was found in the guts of all three species, while E. messinenis appeared to selectively consume marine snow aggregates enriched with bicapitate Nitzschia spp. Large cyanobacteria (>4 µm in diameter) found in guts were also likely consumed with marine snow. The species-specific differences in the diets of these three migrating species suggest that an individual species approach is important in determining how feeding habits affect the structure of pelagic food webs and carbon cycling in the sea. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0815-8.  相似文献   

13.
The emergence of the Isthmus of Panama, approximately 3.0-3.5 million years ago, established two very different marine systems (the Caribbean and the eastern Pacific) and separated previously continuous marine populations. The geographic isolation of transisthmian sister species provides an excellent basis for the study of divergence and speciation processes. Here we describe the morphology of the first postembryonic stage of Alpheus saxidomus and A. simus, two rock-boring alpheids; the estimated time since divergence for this transisthmian pair ranges from 4.4-6.1 to 3-9 million years. The presence of a first zoeal stage in A. saxidomus, e.g., without pleopods and a telson with 7+7 setae, indicates a prolonged developmental sequence. In contrast, hatchlings of A. simus are substantially more developed and resemble juveniles. Thus, the developmental modes of A. saxidomus and A. simus are strikingly different with abbreviated, most probably direct, development in the latter species. Reduced food availability in the Caribbean compared to the Pacific coast is likely to be a possible reason for the evolution of such important differences in life history traits of the two transisthmian sister species. It is suggested that a transition from prolonged to abbreviated development evolved gradually during the estimated time since divergence; however, such a shift may have taken place within a substantially smaller time span.  相似文献   

14.
R. Hill  L. Allen  A. Bucklin 《Marine Biology》2001,139(2):279-287
Accurate species identification is the cornerstone of any ecological study - yet this fundamental step is not always possible for marine zooplankton. Routine species' identification, especially of juvenile andlarval stages, is difficult for Calanus species (Copepoda; Calanoida) in the N. Atlantic Ocean, where two or three species may co-occur. A rapid, simple, and inexpensive molecularly based protocol to identify individual copepods of any life stage has beendeveloped. This protocol will routinely identify four Calanus species in the N. Atlantic and will help to accurately understand the role of each species in coastal and open ocean ecosystems. The DNA sequence of a 633 bp region of the mitochondrial cytochrome oxidase I (mtCOI) was determined for ten Calanus species: C. australis (Brodsky, 1959), C. chilensis (Brodsky, 1959), C. finmarchicus (Gunnerus, 1770), C. glacialis (Jaschnov, 1955), C. helgolandicus (Claus, 1863), C. hyperboreus (Krøyer, 1838), C. marshallae (Frost, 1974), C. pacificus (Brodsky, 1948), C. simillimus (Giesbrecht, 1902), and C. sinicus (Brodsky, 1965). MtCOI sequences were used to design species-specific oligonucleotide primers for C. finmarchicus, C. glacialis, C. helgolandicus, and C. hyperboreus and to optimize a competitive, multiplexed, species-specific PCR (SS-PCR) protocol to discriminate the four species. This corrects and improves a previously published protocol for three Calanus species (Bucklin et al. 1999: Hydrobiologia 401:239-254), unambiguously identifying individual copepods and copepodites from diverse geographic regions of the four species' ranges. In order to further examine the pattern of mtCOI evolution within Calanus (an important consideration for molecular systematic characters), consensus mtCOI sequences were used to reconstruct phylogenetic relationships among the ten species; the mtCOI gene tree agreed with morphological and molecular (based on mt16S rRNA) phylogenies, except that the affiliation of C. sinicus could not be resolved.  相似文献   

15.
Mytilus californianus is a filter feeder that removes seaweed particulates, phytoplankton, and their byproducts from the water. The gills of this animal express high multixenobiotic resistance (MXR) and multixenobiotic transport activity that is related to the mammalian p-glycoprotein (p-gp). The high p-gp observed in mussel gills may provide the mussel protection from natural toxins in the diet. To test this hypothesis, extracts of various seaweeds and phytoplankton found in and around the mussel habitat were examined for presence of p-gp substrates by competition assays with a fluorescent dye substrate, rhodamine B. Accumulation of rhodamine was increased whereas dye efflux was slowed in the presence of algal extracts, indicating that p-gp substrates are present in the seaweeds Macrocystis pyrifera, Egregia menziesii, and Phyllospadix scouleri and the phytoplankton Alexandrium catanella and Pseudonitzchia australis. Initial fractionation of E. menziesii extracts by HPLC showed several distinct peaks of moderate hydrophobicity with p-gp-modulating ability. Additionally, Egregia extract showed potential as a chemosensitizer in tests with mussel (Mytilus edulis) and sea urchin (Lytechinus pictus) embryos. These data indicate that marine algae contain compounds that are substrates and/or chemosensitizers for the p-gp transporter in marine bivalves, thus providing evidence that MXR may have evolved in response to dietary pressures.  相似文献   

16.
As a top-level predator, the brown grouper Epinephelus marginatus can play an important role in maintaining the ecological balance of hard-bottom ecosystems. However, to fulfil this role, the species must have a sufficient population density and a wide size range. The presence of such a "healthy" grouper population is one of the known benefits of the protection measures applied to marine protected areas. The availability, in marine reserves, of areas suitable for settlement and recruitment of early juveniles can contribute to preserving a well-structured population. Thus, knowledge of microhabitats preferred by juvenile groupers is an important step in locating, within protected or not yet protected areas, nursery sites that might need a specific protection regime. The aim of the present work was to evaluate habitat and microhabitat preferences of juvenile E. marginatus, in comparison with two other serranids of comparable size, Serranus cabrilla and S. scriba, in the marine reserve of Ustica Island (SW Mediterranean). At different sites, located along the shallow coastal area of the reserve, 329 individuals of the three serranid species were visually surveyed by means of skin- or SCUBA-diving in June 1999. The location of each encountered fish was characterised by both biotic and abiotic variables evaluated at two spatial scales. In order to assess interspecific differences in the use of the spatial environment, the results were analysed by correspondence analysis. According to observations on a small spatial scale, juvenile groupers showed a preference for cavities and recesses, in clear contrast with both Serranus species. When out of such sheltered places, juvenile groupers avoided visually exposed locations (convex substrates and very large visual fields), preferring flat or sub-horizontal rocky substrates. Conversely, S. scriba, and especially S. cabrilla, chose rather open microhabitats (flat to convex substrates, with large to very large visual fields). On a larger spatial scale, brown groupers and the two other serranids showed no marked differences in their habitat preferences.  相似文献   

17.
Winter mortality has been hypothesized to select for large body size in young-of-the-year (YOY) fishes, yet substantiation of winter mortality and its cause(s) are available for few estuarine or marine species. We examined seasonal length distributions of wild populations of four common marine species, black sea bass (Centropristis striata), tautog (Tautoga onitis), cunner (Tautogolabrus adspersus), and smallmouth flounder (Etropus microstomus), and mortality (i.e., frequency of death), growth, and behavior of their YOY in the laboratory at ambient winter temperatures (mean 7°C, range 2-13°C) during a 135-day period (December 1992 through mid-April 1993) to establish potential causes of their mortality in the field. Young-of-the-year black sea bass experienced 100% mortality when water temperatures decreased to 2-3°C in February, emphasizing the importance of winter emigration from estuaries in this southern species. The low mortality of two labrid species, YOY tautog (14%) and YOY cunner (3%), was consistent with their northern distribution and year-round occurrence in estuarine and nearshore coastal waters. Laboratory mortality of YOY smallmouth flounder (33%) was higher for small (<35 mm total length) fish, suggesting that this small species may experience high winter mortality in estuaries and nearshore coastal waters. Seasonal differences in fish length result potentially from several mechanisms (e.g., mortality and/or migration) that are difficult to assess, but our laboratory experiments suggest that seasonal temperature changes cause size-specific mortality of YOY smallmouth flounder and offshore migration of YOY black sea bass.  相似文献   

18.
M. Thiel 《Marine Biology》2002,141(1):175-183
Mating systems of many symbiotic crustaceans are characterised by a high degree of mate guarding. A peculiar case of mate guarding has been reported for small symbiotic janirid isopods where males mate with immature females. Field samples of individual hosts and laboratory experiments were conducted to reveal the mating behaviour of the symbiont in a natural environment, that is, on their hosts. Along the coast of the Magellan Strait, Chile, the janirid isopod Iais pubescens was frequently found on the shore-living isopod Exosphaeroma gigas. Symbiont prevalence (percent hosts occupied) was high at eight of the nine sampling sites. Mean symbiont intensity was very low at one site (<<1 individual host-1), intermediate at two sites (1-10 individuals host-1) and high at the other sites (10-40 individuals host-1). The mean sex ratio (males:females) was male biased at most sampling sites (n=7). Females of I. pubescens reached substantially larger sizes (1.5-3.0 mm body length, BL) than males (1.1-1.9 mm BL). The majority of males were carrying small juveniles (66.15%), and males with juveniles were significantly larger than males without juveniles - this suggests that males prefer virgin juveniles to adult females and that they compete for small juveniles. In laboratory observations, males were seen to manipulate the marsupium of adult females that were about to release small juveniles. Males obtained virgin juveniles in this manner. Juveniles were carried for ~7 days, and they moulted shortly before being fertilised and released by males. The high proportion of juveniles carried by males in the field (68.2%) supports previous observations that males initially are not able to distinguish male and female juveniles. It is suggested that the mating system of symbiotic janirid isopods with long-term sperm storage and continuous receptivity in females and male mating with virgin females has evolved in response to highly unpredictable encounter probabilities between the sexes. Mate guarding and manipulation of small virgin juveniles may be favoured on the highly mobile hosts of symbiotic janirid isopods. Furthermore, adult females may gain by leaving their emerging offspring in the protective grip of guarding males, thereby reinforcing the maintenance of this peculiar mating system.  相似文献   

19.
S. Chacko 《Marine Biology》1967,1(2):113-117
Previous authors have suggested that there exist close correlations between the topography of the brain and the mode of life in isopods. This paper describes and illustrates the central nervous system of Thenus orientalis (family: Scyllaridae) and evaluates the findings in evolutionary terms. Considering the shortening of the connectives and the fusion of ganglia in the thoracic region of the ventral nerve cord, T. orientalis shows more pronounced marks of specialization than highly evolved isopods; in regard to the topographical displacement of the anatomical units of the brain, it occupies an intermediate position between the primitive Mysidacea and the advanced Isopoda.Present address of the author  相似文献   

20.
Both theoretical and empirical studies have treated mate-guarding in aquatic Crustacea purely as a male decision problem. However, male and female interests are rarely identical, as implied by observations of female resistance against guarding attempts. We tested experimentally the occurrence of sexual conflict over guarding duration in three crustacean species: Idotea baltica, Asellus aquaticus (Isopoda), and Gammarus zaddachi (Amphipoda). Specifically, we manipulated, by osmotic stress or a neuromuscular blocking agent, the female's ability to resist guarding attempts. Female manipulation, by both methods, roughly doubled precopula duration in I. baltica (Figs. 1 and 2) showing that female resistance effectively diminishes guarding duration. However, in A. aquaticus and G. zaddachi female manipulation had no effect on guarding duration, which also was longer than in I. baltica (Fig. 2). This implies either that male and female interests are equal or that the conflict is resolved according to the male interest in these species. The lack of female resistance in such species allows long precopulatory guarding. In I. baltica we also manipulated, by osmotic stress and by clipping nails, male ability to hold the female. These treatments had no effect on guarding duration (Figs. 1 and 2). Male size tended to correlate positively with guarding duration in control groups, but not in female manipulation groups (Fig. 3). Thus, conflict is mainly resolved according to the female interest in I. baltica. Results in this species also suggest that female resistance selects for large male size. Consequently, mechanisms of sexual selection may differ considerably between species with otherwise comparable mating patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号