首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
本研究合成一种新型除磷载Fe/La定向修饰凹凸棒土稻壳基颗粒成型生物炭吸附材料(Fe-La/AC),考察了材料表面特性、Fe/La投加量、热解温度、保温时间以及凹凸棒土投加量等对磷素吸附影响规律. Fe/La最佳投加量为2:2 mmol,AT添加量为30%,热解温度为350 ℃,热解时间2 h,制备的Fe-La/AC对磷酸根的最大吸附量可以达到47.62 mg·g-1(以磷计). 傅里叶红外光谱分析表明Fe、La主要以铁镧氧化物及铁镧水合氯化物的形式存在于炭材料表面,Fe和La提供了磷酸盐吸附的活性中心. 该材料吸附动力学过程符合准二级动力学模型,吸附等温线拟合分析Langmiur模型更适于描述Fe-La/AC对磷酸盐的吸附过程,表明吸附动力学主要受化学作用控制. 磷酸盐吸附机制主要涉及静电吸引、配体交换和内层络合作用. 本研究制备的Fe-La/AC颗粒成型生物炭,可作为低磷浓度废水处理及水体富营养化调控的一种高效除磷吸附剂,具有较大的实际应用前景.  相似文献   

2.
通过磁化和添加溶解性锆盐,制成一种磁铁锆改性牡蛎壳粉材料,对其性质及除磷效果进行研究.结果表明,经磁铁锆改性,牡蛎壳具备磁性且比表面积和孔隙度均得到了显著提升,磷吸附量由4.5 mg·g-1提高到了46.5 mg·g-1,同时通过外加磁场可成功实现改性牡蛎壳粉的回收,而吸附动力学研究则证明整个磷吸附过程包括快速吸附和平衡吸附两个阶段.另外,改性牡蛎壳粉末对于水体中磷的吸附主要以溶解性磷酸盐(SRP)为主,相较于底泥间隙水,改性牡蛎壳粉对底泥上覆水的释磷行为具有更好的抑制效果,同时该材料还会促进底泥磷形态中易释放的铁结合态磷(Fe-P)向难释放的闭蓄态磷(Oc-P)转化,并降低易释放交换态磷(Ex-P)的含量.上述结果说明磁铁锆改性牡蛎壳适合作为一种高效除磷吸附剂用于控制富营养化水体中磷过量现象.  相似文献   

3.
酸/碱改性香蒲生物炭对水中磷的去除及其机制研究   总被引:1,自引:0,他引:1  
雨水径流中存在的磷污染问题严重威胁生态环境,而传统的雨水径流处理设施,如雨水花园、渗滤沟等,对磷的去除率较低且成本较高.以湿地中收割的香蒲为原材料,酸改性后制备的生物炭(TH7)的除磷效果非常好,明显优于碱改性生物炭(TOH7):与原生物炭(T7)相比,酸改性生物炭大大提高了磷的去除效率,可从T7的65%提高至94%,而碱改性生物炭无除磷效果.TH7的表面孔隙发达,比表面积高达434.2m2·g-1,对磷的吸附符合Freundlich模型和伪二级动力学模型,其吸附属于物理化学吸附,具体的机制为孔隙填充、表面化学沉淀、氢键结合.研究表明,以香蒲为原料制备的改性生物炭是一种效果优越的除磷吸附剂,可应用于植草沟、雨水花园等以填料为主要吸附层的径流处理设施中.  相似文献   

4.
壳聚糖和FeS改性生物炭吸附四环素:吸附机制与位能分布   总被引:2,自引:0,他引:2  
实验以市政污泥为生物质炭原料,并以硫化亚铁和壳聚糖对其改性,制得一种新型环保的吸附材料(SB-FeS).以四环素(TC)为目标污染物,通过批次实验、大量表征分析、数学模型分析对SB-FeS吸附TC的机制进行了详述.实验结果表明,SB-FeS对TC的最大吸附量为183.01 mg·g-1;SB-FeS对TC的吸附为物理吸附和化学吸附共同作用.SB-FeS对TC的吸附机制主要为静电吸引、孔隙填充、螯合、离子交换、硅酸盐键结合和氢键结合.此外,位点能量分布的研究表明,TC会优先占据高能吸附位点,随后逐渐占据低能位点;且溶液温度升高,SB-FeS表面会愈发不均匀.实验证明SB-FeS对TC吸附是有效的,并且对于吸附机理的探讨可以为后续研究提供帮助.  相似文献   

5.
浙江某农场土壤和沟渠沉积物对氨氮的吸附研究   总被引:13,自引:1,他引:12  
通过静态吸附实验,研究农田土壤及沟渠沉积物对氨氮的吸附作用.实验表明,水相氨氮浓度为5~100 mg/L时,风干农田土壤、风干沟渠沉积物及新鲜沟渠沉积物3种吸附剂的吸附等温线均呈良好线性关系,并符合Freundlich吸附模式;农田土壤与沟渠沉积物的氨氮背景含量分别为12 mg·kg-1和92 mg·kg-1,并且农田土壤对氨氮的吸附系数为8.21,而风干沟渠沉积物与新鲜沟渠沉积物吸附系数分别为5.42与6.84,因此,土壤的吸附能力要大于沟渠沉积物,后两者的吸附能力相近.对3种吸附剂吸附机制的讨论表明,吸附特性与界面性质相关,实验氨氮浓度范围内吸附作用主要为离子交换.相同实验条件下,当初始氨氮浓度较大时,随温度升高,3种吸附剂对氨氮的平衡吸附量减小,对氨氮的吸附为弱放热过程.  相似文献   

6.
白果壳遗态Fe/C复合材料对水中磷的吸附特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究PBGC-Fe/C-G(白果壳遗态Fe/C复合材料)对水中磷的吸附特征,以PBGC-Fe/C-G为吸附剂,对吸附剂投加量、溶液体系pH、初始磷质量浓度、温度和吸附剂粒径为影响因素进行静态吸附试验分析,并结合SEM、EDS、XRD和FT-IR等手段对吸附前、后材料进行表征,以揭示PBGC-Fe/C-G的吸附除磷机制.结果表明:①当初始磷质量浓度 < 10 mg/L、吸附剂投加量为0.2 g/(50 mL)、溶液为酸性(pH=3)、反应温度为45℃、吸附剂粒径 < 0.149 mm时,吸附效果最佳,吸附量达1.62 mg/g.②准二级动力学模型和Freundlich吸附等温模型能较好地模拟PBGC-Fe/C-G对磷的吸附过程.③热力学结果显示,ΔG < 0、ΔS>0和ΔH>0,说明PBGC-Fe/C-G对磷的吸附过程是自发、熵增的吸热过程.研究显示,PBGC-Fe/C-G吸附除磷主要通过配位作用、静电引力、等电荷离子交换和物理作用4种协同完成,其中Fe活性位与磷酸根离子的配位反应为主要的反应过程.   相似文献   

7.
水合氧化镧吸附除磷的试验研究   总被引:29,自引:3,他引:26  
丁文明  黄霞  张力平 《环境科学》2003,24(5):110-113
以开发新型高效除磷吸附剂材料为目的,以金属水合氧化物MeH(metal hydrate)为试验对象,对所选材料进行了吸附除磷性能评价.通过对多种水合金属氧化物吸附除磷性能的比较研究,发现水合氧化镧LaH(lan-thanum hydrate)具有优异的除磷吸附容量,其吸附容量大约为参照物粉末活性氧化铝的十几倍.该吸附剂的吸附容量随pH值变化显著,在pH=3附近达最大值;吸附等温线较符合Langmuir方程;进行了抗无机阴离子干扰能力测试,给出了干扰离子的影响顺序;该吸附剂对正磷酸根的去除性能优越,但对聚磷酸根的去除效果不理想.试验结果表明,水合氧化镧在平衡吸附容量、pH适应范围等方面与参照物活性氧化铝相比较,具有优异的性能.  相似文献   

8.
为获得价格低廉、吸附性能优良的石墨烯基吸附剂,以氧化石墨烯(GO)、羧甲基纤维素(CMC)为基材,以聚乙烯亚胺(PEI)为改性试剂,通过化学修饰的方法制备了氨基修饰氧化石墨烯-羧甲基纤维素复合吸附剂(GO-PEI-CMC).采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)及X射线光电子能谱(XPS)等表征手段证实了CMC、氧化石墨烯与PEI已成功复合.静态吸附实验表明GO-PEI-CMC对Cr (VI)表现出良好的吸附性能,由Langmuir等温吸附模型所得最大吸附量值为243.92 mg·g-1.吸附动力学、吸附等温线研究表明GO-PEI-CMC对Cr (VI)的吸附为单分子层、化学吸附过程.GO-PEI-CMC对Cr (VI)吸附性能优良,且具有绿色环保、可生物降解的优点,是一种极具潜力的Cr (VI)吸附剂.  相似文献   

9.
磷是造成水体富营养化的重要因素之一,深度去除污染水体中的磷,具有重要的环保意义.为此,本研究比较了多种填料包括海绵铁及其改性填料、钢渣、活性氧化铝、活性炭的吸附除磷特性及动力学,探究了除磷机理,构建了高效除磷渗滤床,考察了动态连续流运行条件下的除磷特性.结果表明酸改性海绵铁具有最高的饱和磷吸附容量,为19.45 mg·g-1,碱改性海绵铁、活性氧化铝、钢渣、未改性海绵铁及活性炭的饱和磷吸附容量分别为10.91、8.70、7.73、3.39和1.34 mg·g-1.在此基础上,利用高效除磷填料酸改性海绵铁和钢渣构建了除磷渗滤床,开展了连续240 d的连续流实验,在磷容积负荷为6 g·d-1·m-3条件下,渗滤床累积磷吸附量达到10215 mg,单位容积吸附量达到1.62 kg·m-3.总之,利用酸改性海绵铁和钢渣构建的除磷渗滤床具有较高的除磷效率和性能,可以作为除磷单元与现有的水污染治理及净化工艺耦合,提高或拓展系统除磷功能.  相似文献   

10.
钢渣对水体中磷的去除性能及机制解析   总被引:1,自引:0,他引:1  
罗晓  张峻搏  何磊  杨雪晶  吕鹏翼 《环境科学》2021,42(5):2324-2333
针对不同类型钢渣在除磷过程中存在的显著差异,以电炉渣为研究对象,探讨了环境因素(吸附时间、吸附温度)对钢渣除磷的影响,验证了其对磷酸盐、焦磷酸盐及实际水体的除磷效果,联合采用扫描电镜(SEM)、能量色散X射线能谱(EDS)、X射线荧光光谱(XRF)和X射线衍射光谱(XRD)技术探究其除磷机制,对比分析了钢渣与陶粒和沸石的除磷效率,并对钢渣除磷的安全性能进行了评估.结果表明,吸附时间显著影响钢渣除磷效果,当吸附时间为30 min时钢渣对质量浓度范围为1~20 mg·L-1的磷酸盐溶液的去除率均可达到97%以上.温度对实验所用钢渣的除磷效果影响并不显著.钢渣对焦磷酸盐吸附能力弱于正磷酸盐,其对初始质量浓度为3 mg·L-1的焦磷酸盐的去除率为82.45%.光谱分析结果表明,钢渣除磷的主要机制为化学吸附并辅以物理吸附,CaHPO4·2H2O为主要沉淀物质.钢渣对生物池出水和湿地系统中的磷素去除效果显著,总磷去除率分别为98.36%和93.33%.对比可知,钢渣对磷酸盐的去除效果优于陶粒和沸石,其对PO43-的去除率分别为96%、40%和10%.钢渣浸出液中各重金属含量均符合地表水Ⅰ类标准要求,钢渣安全可靠.  相似文献   

11.
铝污泥酸化提取液改性沸石的除磷特性及机制   总被引:2,自引:1,他引:1  
韩芸  胡玉洁  连洁  杨思哲  齐泽宁 《环境科学》2019,40(8):3660-3667
为了提高沸石的除磷能力并降低改性成本,以给水厂铝污泥为铝源,采用酸化提取液合成层状双氢氧化物(LDHs)覆膜于沸石表面制备改性沸石,分别测定原沸石、Al-Zn改性沸石及铝污泥改性沸石的表面特性和化学组分,分析等温吸附及吸附动力学特性,探讨铝污泥改性沸石的除磷性能及除磷机制.结果表明,最佳酸化提取条件为60 min、150 r·min~(-1)和p H1. 0,该条件下1 g铝污泥(干重)可提取77 mg的铝;改性沸石的饱和吸附容量和解吸性能较原沸石显著提高,尤其是铝污泥改性沸石,其理论最大吸附量从30. 24 mg·kg~(-1)提升至170. 40 mg·kg~(-1);改性使得沸石对磷酸盐的主要吸附类型由物理吸附向化学吸附转变.以铝污泥为铝源改性沸石能有效地提高其对磷酸盐的吸附能力及再生能力,在降低磷浓度过高引发的水体富营养化风险的同时,实现以废治废的目的.  相似文献   

12.
树脂基纳米钛锆氧化物复合吸附剂同步去除水中磷和氟   总被引:1,自引:1,他引:0  
以大孔强碱性阴离子交换树脂D201为基体,负载纳米钛、锆氧化物,制备新型树脂基纳米钛锆氧化物复合吸附剂TiZr-D201.通过吸附等温线实验、pH影响实验、竞争吸附实验、动力学实验及柱吸附实验,并结合对吸附剂的表征,探讨了复合吸附剂对水中磷和氟的吸附性能和相应的吸附机制.结果表明,当pH值为5.8,温度为308K时,Ti-Zr-D201对磷和氟的Langmuir拟合最大吸附容量分别是34.9 mg·g~(-1)和35.1 mg·g~(-1),且吸附行为是自发进行的,温度越高,吸附效果越好;与磷相比,pH值对Ti-Zr-D201吸附氟的影响更为显著;选取SO_4~(2-)、NO_3~-和Cl~-作为竞争离子,Ti-Zr-D201较基体D201表现出很好的抗干扰能力;内扩散模型拟合结果表明Ti-Zr-D201在吸附平衡前存在两个不同的吸附阶段;柱吸附实验表明Ti-Zr-D201具有稳定的结构和良好的动态吸附性能,并且可再生循环使用,具备实际应用的潜力.  相似文献   

13.
铈改性水葫芦生物炭对磷酸盐的吸附特性   总被引:4,自引:4,他引:0  
王光泽  曾薇  李帅帅 《环境科学》2021,42(10):4815-4825
本研究通过共浸渍-热解法开发了一种铈改性水葫芦生物炭吸附剂(Ce-BC),用以去除实际废水中的磷酸盐,考察了Ce-BC投加量、废水pH值、反应时间及共存的竞争性离子对吸附过程的影响.结果表明,当Ce-BC投加量为0.4 g·L-1,初始磷酸盐溶液pH值介于3~10时,Ce-BC对磷酸盐的吸附性能最佳,最大吸附量达到35.00 mg·g-1.Ce-BC对磷酸盐的吸附过程符合准二级动力学模型,并能在1 h内达到98%的磷酸盐去除率,吸附速率快.此外,Ce-BC具有较高的抗阴离子干扰能力,且具有良好的再生性能,Ce-BC经过4次再生后仍能保持90%以上的初始吸附效率.场发射扫描电镜-能量色散光谱(FESEM-EDS)、傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)和X射线光电子能谱(XPS)等表征结果表明,Ce-BC对磷酸盐的吸附机制主要包括配体交换和内球络合.本研究制备的Ce-BC吸附剂,可以有效去除及回收实际生活污水中的磷酸盐,在避免水体富营养化的同时实现磷资源的回收利用.  相似文献   

14.
镁铝LDH制备表征及吸附磷酸根离子的性能研究   总被引:1,自引:1,他引:0  
孔茜  杜倩 《环境科学与技术》2011,34(3):102-104,125
采用共沉淀法制备碳酸型及硝酸型Mg-Al-LDH(层状双氢氧化物)粉体,并对两种不同阴离子的LDH样品进行X射线衍射(XRD)及红外光谱表征;又将其作为吸附剂,对水中磷酸根离子的去除性能进行了系统研究。实验结果表明,两种LDH的晶体结构基本相似;其对废水中磷酸根离子具有很好的去除效果,且碳酸型LDH除磷效果更佳。通过对模拟废水及实际废水进行吸附实验,得到了LDH除磷的最佳条件。镁铝LDH在废水除磷方面具有较好的应用前景。  相似文献   

15.
Zn系LDHs覆膜改性人工湿地沸石基质除磷机制   总被引:6,自引:4,他引:2  
选择Zn系层状双金属氢氧化物(LDHs),采用水热-共沉淀法合成3种不同类型的Zn-LDHs(Fe Zn-LDHs、Co Zn-LDHs和Al Zn-LDHs)并覆膜于常用人工湿地沸石基质表面;利用模拟垂直流人工湿地小试系统,对原始沸石及3种Zn-LDHs覆膜改性沸石基质进行除磷净化实验、等温吸附-解吸实验以及动力学吸附实验,通过上述实验对以Zn-LDHs覆膜改性沸石基质为代表的改性基质除磷机制进行研究.结果表明,Zn-LDHs覆膜改性沸石基质对磷素净化效果具有明显的提升功能,其中以Fe Zn-LDHs覆膜改性基质尤为突出;改性使基质的饱和吸附容量得以提高,增强了基质对磷酸盐的解吸性能,并使沸石基质对磷酸盐的主要吸附类型由物理吸附向化学吸附转换;通过对沸石基质类型及其改性方式的合理选择,可达到利用沸石人工湿地强化除磷以高效净化富营养化水体的目的.  相似文献   

16.
为了寻求城市暴雨后地表径流中低浓度磷的去除方法,考察了粉煤灰、活性炭、沸石等材料对低浓度磷的吸附特性,进而利用筛选出的吸附材料对河岸护坡砖表面进行改性,制成非烧结生态砖材料,系统地研究了吸附材料添加量、磷酸盐浓度、反应时间等对生态砖材料吸附磷酸盐效率的影响,并探究了紫花苜蓿对生态砖表面磷酸盐的吸收能力.结果表明:①在3种吸附材料中,粉煤灰对磷酸盐的吸附效果最佳,3 h内其对磷酸盐的去除率分别比沸石、活性炭提高了54%、67%.②当生态砖表面搭载36 mg/cm2粉煤灰时,生态砖材料表现出最佳的磷酸盐吸附性能,比未搭载粉煤灰的生态砖材料对磷酸盐的去除率提高了14%.③生态砖材料对磷酸盐的吸附符合Freundlich吸附等温方程和颗粒内扩散方程,其对磷酸盐的吸附机理是由颗粒内扩散起主导作用的物理吸附.④在缺磷胁迫环境下,紫花苜蓿根系分泌出的柠檬酸将生态砖表面的磷酸钙晶体溶解,进而将其吸收进植物体内,15 d对生态砖表面磷的脱附比例为38.40%±0.37%.研究显示,粉煤灰改性的非烧结生态砖材料对磷酸盐具有较好的吸附效果,并且吸附的磷酸盐能够被植物所吸收可实现生态砖材料的天然再生.   相似文献   

17.
本文研究铜绿微囊藻生长与铁氧化物吸附解吸磷的相互作用机制,旨在为富营养化池塘、水库调控和治理提供理论指导。采用化学方法合成铁氧化物并对其进行表征,研究铁氧化物对磷的吸附特性和铜绿微囊藻生长与铁氧化物吸附解吸磷的相互作用。结果表明铁氧化物的物相组成与自然界土壤和底泥中铁氧化物存在形态相似;铁氧化物对磷的吸附属于专性吸附,吸附等温曲线符合Langmuir方程。在含铁氧化物的BG11培养基中培养铜绿微囊藻,铁氧化物对磷的吸附导致培养液中总磷(TP)和水溶性磷(SWP)浓度降低,抑制铜绿微囊藻的生长。铜绿微囊藻在含吸附磷的铁氧化物而无磷的BG11培养基(4.02 < pH < 10.05)中能够正常生长,藻生长导致溶液pH升高是诱导铁氧化物解吸磷的主要因素,铜绿微囊藻光合作用释放的氧气可以抑制三价铁向二价铁的转化。针对铜绿微囊藻诱导铁氧化物释放磷并被其吸收的机制,要控制富营养化水体蓝藻爆发,除控制外源磷输入外,应该抑制底泥中铁磷释放,或通过藻细胞的收集和移除来降低底泥中铁氧化物的磷负荷。  相似文献   

18.
水体中磷的大量存在引发了水体富营养化,导致水质逐步恶化、黑臭。为了有效处理水体中的磷(主要有磷酸盐和植酸类),采用成熟竹子为原料、氯化镁为改性剂,以氮气热解法制备载镁生物炭,对水体中磷进行吸附研究,同时实现对生物炭的资源化利用。通过载镁生物炭对无机、有机磷在水体中的动力学实验和解析实验,并结合X射线衍射、扫描电镜、傅里叶变换红外光谱等技术研究了载镁活性炭对磷酸盐及植酸的吸附性能及机理。结果表明:载镁生物炭对两种类型磷的吸附量较单一生物炭均显著提高,对磷酸盐和植酸的吸附平衡量分别达到105,165 mg/g。载镁生物炭对2种磷的吸附动力学均符合准二级动力学拟合方程,吸附等温线符合Langmuir和Freundlich方程,其对有机磷植酸的最大吸附量高于磷酸盐,吸附过程受多种机理共同作用,以化学沉淀吸附为主。此外,吸附过程中载镁生物炭分别与磷酸盐、植酸生成了针状的磷酸镁水合物和非晶态的含镁磷的复合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号