首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Nine selected elements (Cu, Pb, As, Zn, Co, Ni, Cr, Cd and Fe) were determined by inductively coupled plasma atomic emission spectroscopy in 15 samples from the tailings pond (Zelazny Most) and waste water streams (Moskorzynke and Rudna) in the Kupferschiefer mining district in Southwest Poland. Waste water from mining and industry enter the Zelazny Most pond. The water then flows through Moskorzynke and Rudna streams, and discharges into the River Odra. The analytic results indicate that the contamination with Cu, Pb, Zn, As, Co, Cd and Fe extend about 6km along the streams in contrast to the nonpolluted samples close the River Odra. Their concentrations reach a level, which could be toxic for plants, animals and humans. The contamination with Ni and Cr continued at least 20km along Rudna stream. Besides mechanical transport, redox conditions and Corg contents also played an important role for trace element and Fe contamination in Rudna stream. The samples with high Corg contents have also high contents of trace metals. In Moskorzynke stream the element contamination was mainly caused by mechanical transport of particles. Polyaromatic hydrocarbon (PAH), which is abundant in Kupferschiefer, is toxic for animals and humans. The PAH concentration in the stream sediments was determined by GC and GC/MS. The results indicate that the contamination of PAH reaches 6 and 17mgkg–1 in samples TP1 and RS6, respectively. In the other samples, the PAH contents are lower than 3mgkg–1. Some PAH could be solved by waste water in the tailings pond and migrated to the stream sediments. Some PAH might be contained in particles which were transported mechanically from the tailings pond into stream sediments.  相似文献   

2.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

3.
Urban Geochemistry: Investigations in the Berlin Metropolitan Area   总被引:16,自引:0,他引:16  
The distribution of 41 trace and 11 major elements in 4000 samples of topsoils (0–20cm) from the Berlin Megacity is interpreted. The detailed comparative analysis of the element distributions and the results of factor analysis showed that the distributions of the elements Al, K, Na, Rb, Zr, Nb and Ti are mainly natural origin, i.e. related to the composition of the parent material. Industrial and commercial areas often display considerably elevated values for Mo, Ni, As, Ag, Cr, Sb, Fe, Mn, Mg, P, TOC and especially Pb, Hg and electrical conductivity relative to the geogenic background of the area surrounding Berlin. Industrial areas tend to be characterised by contamination of the subsoil with Cu, Cd, Zn, Hg, Pb and Sn. In the area around Berlin, extensive, strong anamalies of Cd, Zn, Pb, Cu and Hg occur near iron and steel industries and construction materials industries, as well as in the vicinity of sewage farms.  相似文献   

4.
This paper describes a study of the trace element distribution in sediments, marine water and mussel Mytilus galloprovincialis of the Venetian Lagoon around the Island of Murano, an island with a long tradition of glassmaking. Trace elements analysed include Fe, Mn, Zn, Cu, Cr, Pb, Ni, Ag and As. Sediments are contaminated with Zn, Cu, Ag, As and Pb, with levels in the <2m fraction that are likely to cause adverse biological effects to marine organisms. The pelite (<63m) is the main carrier of heavy metals at most sites. However, the fine-grained and coarse sand on the southern coast of Murano accounts for a significant proportion of Fe, Mn, Zn, Cr, Ag, Ni and Pb. Most trace element concentrations found in soft tissue of mussels appear to be within recommended Italian and international guidelines for shellfish for human consumption, the only exception being relatively high As levels. The bioaccumulation of Ag and Cr is more pronounced in the shell of these organisms. In the marine water of the lagoon, trace elements are more enriched than in other areas of the Mediterranean, with particular reference to the dissolved labile species of Zn, Mn, As, Cu, Ni and Cr.  相似文献   

5.
Concentrations of Pb, Zn, Cd, Cu,Cr, Co and Ni were determined in topsoil obtained from vicinities of auto-repair workshops, gas-stations and motor-parks in Ibadan, Nigeria. The levels were elevated above background concentrations in control sites. Lead and copper were the most significant contaminants, and the degree of contamination was highest in auto-repair workshops. Factors of accumulation for Pb and Cu were: auto-repair workshops: Pb - 95.8, Cu - 117; gas stations: Pb - 46.6, Cu - 33.5; motor-parks: Pb - 31.6, Cu - 16.8. For Zn, Cd, Cr, Co and Ni, the factors of accumulation were much lower and did not vary much among the three study areas. Average values for all locations were: Zn - 5.2, Cd - 4.4, Cr - 3.7, Co - 1.5, Ni - 1.7. Improper disposal of waste lubricants is the likely source of high copper contamination.  相似文献   

6.
In the Upper Weardale area the headwaters of the River Wear bisect the Northern Pennine Orefield, where Pb-Zn-F-Ba vein-type mineralisation has been exploited since the Roman Conquest. The area contains evidence of open pit, underground and hydraulic mining of base metal ores, associated mineral processing and smelting, exploitation of ironstones during the industrial revolution, recent extraction of fluorite and active quarrying. The aim of this study was to determine the extent of modern sediment contamination arising from these past activities. Samples of active stream sediments were collected from all major drainage channels at 1 km intervals. The sediments were analysed for Pb, Zn, Ba, Mn, Fe, Co, Ni, Cu, Cr, As, Sb, Ag and compared to data from earlier regional geochemical surveys of low order drainage samples using ArcView software. The significance of contamination levels was assessed using the Ontario aquatic sediment quality guidelines. Our results indicate widespread contamination of some major drainages by Pb, Mn, Zn and As at concentration levels anticipated to significantly affect use of the sediments by benthic organisms. Furthermore, Pb contamination shows persistence in stream sediments downstream towards agricultural areas of the floodplain and drinking water abstraction points, above which interaction with colliery mine water discharges may occur.  相似文献   

7.
In this study concentrations of selected metals viz., Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Pb and Zn in surface soils of Sialkot city known worldwide for tanneries and pharmaceutical industries were measured to assess the status of urban soil pollution and to identify sources of contamination. Hierarchical cluster analysis (HACA) indicated concentrations of Mg and Ca related to parent rock material, Cd, Co, and Pb with traffic related activities, Cr, Cu, Ni and Zn either associated with automobiles activities or industrial pollution and Fe, K and Na related with anthropogenic activities or lithogenous materials. Correlation analyses and principal component analysis based on factor analysis confirmed the results of HACA. Spatial distribution maps exhibited relatively higher concentrations of Cd, Co, Cu, Ni, Pb, Cr and Zn along traffic routes in the city and streams. The results highlighted concentration of Cd, Ni, Cr, Zn, and Pb measured in urban soil exceeded the permissible limit of surface soils and advocated an imperative need for detailed baseline investigations of spatial distribution of heavy metals and other contaminants for the formulation of geochemical database that should be made available to stakeholder involved in monitoring, assessment and conservation of soil contamination for future planning and management of the Sialkot city.  相似文献   

8.
珠江三角洲养殖鱼塘水体中重金属污染特征和评估   总被引:2,自引:0,他引:2  
为了解珠江三角洲主要养殖环境中重金属含量及潜在生态危害程度,用电感藕合等离子质谱法和原子荧光法测定了肇庆、广州、惠州和茂名4市14个样点沉积物中7种元素的水体及底泥总量,并对底泥中主要重金属污染状况及潜在生态风险进行了评价。结果表明:养殖鱼塘水体中Cr质量浓度范围是nd-0.1011 mg·L-1,超标率为7.1%,Cu质量浓度范围为nd-0.1438 mg·L-1,超标率为64.3%,As质量浓度范围是0.0112-0.0812 mg·L-1,超标率为24.1%,Hg质量浓度范围是0.00004-0.00458 mg·L^-1,超标率为35.7%,Pb质量浓度范围为nd-0.0973 mg·L^-1,超标率为6.8%,其余Ni、Zn和Cd质量浓度范围分别为nd-0.0218、nd-0.0232和nd-0.00319 mg·L^-1,均未超渔业水质标准;底泥中重金属元素Cr、Cu、Zn、As、Hg、Cd和Pb的平均值分别为83.86、46.19、242.16、32.38、0.64、1.00和60.06 mg·kg^-1,地积累指数评价结果显示,表层沉积物重金属污染程度顺序为Cd>Hg>Zn>Pb>As>Cu>Cr,其中,Cd污染程度为中-强,是底泥污染最严重的元素。潜在生态风险指数分析,单项潜在生态风险指数生态风险均值排列顺序为 Hg>As>Cd>Pb>Cu>Zn>Cr。对区域综合潜在生态风险指数RI的贡献率最大的元素为Hg、As和Cd。4个市底泥潜在生态风险综合指数(RI)比较,惠州(290.13)>广州(240.54)>茂名(193.23)>肇庆(116.40)。Hg和Cd是该水域污染和潜在生态风险最大的元素。  相似文献   

9.
A trace elements study of various samples from the Keana brines field, middle Benue Trough was carried-out to determine the extent to which Pb–Zn–S and BaSO4 mineralisations have affected the quality of the brines and the waters in the area. Different sample media such as well-water, pond water, brine spring pool water, stream water, stream sediments etc. were analysed. Geochemical results show that Cu, Zn, Pb, As and S are concentrated in the waters (0.3, 0.36, 0.05, 0.07 and 1 1.5 ppm respectively). These elements are more concentrated in both the spring and pond waters, suggesting that the spring water could have acted as the transport medium for these elements released from deep-seated sources. Transitions elements (Ti, V, Cr, Fe, Co, Ni and Sr) are concentrated in the waters. Compared to the World Health Organization (WHO) admissible limits, the well waters present very high concentrations in Cd (0.56 ppm) and Sb (0.40 ppm) (200× and 70× WHO admissible values respectively). There is a preferential concentration of transition elements (Ti, V, Fe, Co and Ni) in the sediments (41.38, 362, 52.21, 269 and 54 ppm respectively) than in the waters (0.70, 0.05, 5.6, 0.04 and 0.02 ppm respectively). Similarly, Cu, Zn, Pb and As are concentrated in the sediments (44, 72, 41 and 14 ppm respectively). The concentrations of transition elements (Ti, V, Cr, Fe, Co and Ni) in the refined salt were highly elevated (784, 363, 283, 105, 59.2 and 42.6 ppm respectively) (7000–10,000× well water). Similarly, the concentrations of As, Pb, Br and Sr in the refined salt were also alarming (11.6, 16.4, 16.4 and 122 ppm respectively), (1000, 700, 3000 and 20,000× well water values respectively). S on the other hand is absent. One of the striking features is the absence of I, Cd, Sb and Se in the refined salt crystals which were detected in the waters and the brines. Compared to WHO admissible values, the refined salt crystal concentrations for Ni (426 ppm) and Cr (283 ppm) were also very high (2000× WHO values respectively) and to a lesser extent Cu (26.9 ppm) and Zn (21.7 ppm) (12 and 7× WHO values respectively).  相似文献   

10.
Levels of Pb, Zn, Cu, Cr, Ni and Cd were determined in topsoil and vegetation in the vicinity of a factory manufacturing lead- batteries in Ibadan, Nigeria. The samples were collected along five transects in different directions, and varying distances up to 1000m from the factory. Soil lead levels were found to be elevated around the factory, with average levels of about 2000mgkg–1 close to the fence that declined gradually to about 50mgkg–1 some 750m away. Soil-lead level around a primary school located about 500m from the factory was as high as 1450mgkg–1. Lead levels were equally elevated in the vegetation, though average levels in vegetation were slightly lower than in the soil. Cadmium concentrations in soil and vegetation, though low, were more positively correlated with lead levels than any of the other metals are with lead.  相似文献   

11.
Heavy metal concentrations (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined in various tissues (hepatopancreas, branchial hearts, salivary gland, gills, genital tract, mantle, arms and skin) of Octopus vulgaris collected from three different contaminated sites in front of Alexandria (Egypt) during 2000. All collected tissues displayed high enrichment factors when compared to ambient levels. Heavy metal concentrations in most tissues displayed significant differences among sites, sizes and sex. This study suggests that hepatopancreas, and to a lesser extent branchial hearts, are better indicators of chronic Cu, Fe, Zn and Cd contamination than edible tissues. The enrichment factor (EF) for heavy metals in the hepatopancreas and in edible tissues allowed discriminating our samples into three main groups; (1) EF?>?55 (Cu), (2) EF ranging from 15 to 7.5 (Fe, Cd and Zn) and (3) EF?相似文献   

12.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

13.
Soil and water samples were collected from the Susaki area of Korinthos and analysed for heavy metals in order to evaluate their environmental impact. The geology of the studied area includes ultrabasic rocks and Neogene and Quaternary deposits whereas magnesite veins are found within the ultrabasic rocks. In the north part of the studied area post volcanic emissions of H2S, CO2 and H2O vapor continue to the present day. All the samples were analysed for heavy metals by the ICP method. The element ranges (in g g–1) for soil samples are: Cu 11–63, Pb 5–256, Zn 21–604, Ni 183–2665, Co 12–124, Mn 456–1434, As 5–104, Sr 44–730, V 21–84, Cr 163–2346, Ba 48–218, Zr 3–41, Y 3–13. The metals Pb, Zn, Ni, Co, Cr, Fe, Cu, Mn, As and Sr are enriched in the Susaki soils. The element ranges for water samples are: Cu 65–103ppb, Pb<10ppb, Zn<5ppb, Ni 21–163ppb, Co 2–12ppb, As<30ppb, Cr<20ppb, Ba 36–785ppb, Sb<10ppb, W<10ppb, Bi<30ppb, Mn 0.0–0.9 g g–1, Fe 0.01–0.22 g g–1, Na 843–3076 g g–1, K 98–278 g g–1, Si 39–65 g g–1, P 0.1–0.2 g g–1. There is a natural pollution of soils with elevated concentrations of Ni, Co, Mn, Fe and Cr due to the presence of ultrabasic rocks. Another natural case of As pollution of soils is due to the volcanic activity and the geothermal field in the area. The geochemical data of ground waters and also the 18, D data showed a mixing in different proportions between sea water and meteoric water.  相似文献   

14.
The distribution and enrichment of selected trace metals (Cd, Cr, Cu, Ni, Pb, Sn, Zn) in benthic sediments of the Southport Broadwater, a semi-enclosed coastal body of water adjacent to the Gold Coast city, south-eastern Queensland, Australia, was studied with the objective of assessing the extent and degree of sediment contamination. Sediment samples from the 0–10 cm and 10–20 cm depth intervals of 32 sites within the Southport Broadwater and surrounding residential canals were analysed for particle size distribution, pH, organic C and ‘near-total’ major (Al, Ca, Fe, Mn) and trace (Cd, Cr, Cu, Ni, Pb, Sn, Zn) metal contents. Sediment contamination for each trace metal was assessed by (1) comparison with Australian sediment quality guidelines, (2) calculation of the index of geoaccumulation based on regional background values, and (3) geochemical normalisation against Al (i.e. the abundance of alumino-silicate clay minerals). Based on this approach, the results indicate that submerged sediments in the study area are not presently enriched with Cd, Cr or Ni, with the spatial distribution of these metals being very well explained by the abundance of alumino-silicate clay minerals. However, several sites were strongly enriched with Cu, Pb, Sn and Zn, arising from sources related to either urban runoff or vessel maintenance activities. The study indicates that several varying approaches are needed for a satisfactory assessment of contaminant enrichment in estuarine sediments.  相似文献   

15.
Concentrations of the heavy metals Cu, Ni, Pb, Zn, Cd, and Cr were examined in surface water and sediment from the Luan River inChina,. With a decline in Cu and Ni concentration found in surface water at downstream stations. This finding suggests that water currents are a major explanatory factor in heavy metal contamination. The abundance of Cr, Pb, and Cd observed in the middle reaches of the river indicates heavy metal contamination in local areas, although there was an obvious decrease in concentrations in the water downstream of the Daheiting Reservoir. The significant rising trend in Cu, Pb, and Ni seen the sediment farther away from the river also suggests that anthropogenic activities contribute to heavy metal pollution Sediments were therefore used as environmental indicators, with sediment assessment was conducted using the geo-accumulation index (Igeo) and the potential ecological risk index (RI). The Igeo values revealed that Cd (3.13) and Cr (2.39) had accumulated significantly in the Luan River. The RI values for most (89%) of the sampling stations were higher than 300, suggesting that sediment from the Luan River poses a severe ecological risk, with the potential ecological risks downstream higher than that in the upper and middle streams. Good correlations among Pb/Ni, Pb/Cd, Cu/Pb, and Cu/Cd in the water and Cr/Ni in the sediment were observed. Cluster analysis suggested that Cd may have various origins, being derived from anthropogenic sources.  相似文献   

16.

Increasing concentration of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in the soil may impose a serious threat to living organisms due to their toxicity and the ability to accumulate in plant tissues. The present review focuses on the phylogenetic relationships, sources, biotransformation and accumulation potential of hyperaccumulators for the priority HMs and PAHs. This review provides an opportunity to reveal the role of hyperaccumulators in removal of HMs and PAHs from soils, to understand the relationships between pollutants and their influence on the environment and to find potential plant species for soil remediation. The phylogenetic analysis results showed that the hyperaccumulators of some chemicals (Co, Cu, Mn, Ni, Zn, Cd) are clustered on the evolutionary tree and that the ability to hyperaccumulate different pollutants can be correlated either positively (Cd–Zn, Pb–Zn, Co–Cu, Cd–Pb) or negatively (Cu–PAHs, Co–Cd, Co–PAHs, Ni–PAHs, Cu–Ni, Mn–PAHs). Further research needs to be extended on the focus of commercializing the techniques including the native hyperaccumulators to remediate the highly contaminated soils.

  相似文献   

17.
芜湖市区土壤重金属污染评价及来源分析   总被引:5,自引:0,他引:5  
对芜湖市区153个土壤样品中9种重金属的含量进行测定和评价,利用多元地统计方法进行污染来源分析。结果表明:芜湖市区土壤Zn、Fe、Mn、Cu、Pb、Co、Cd、Ni、Cr的平均含量分别为96.8、30600.1、466.1、35.0、29.1、16.7、1.2、26.3、78.3mg/kg;除Fe、Mn、Ni外,其他元素均高于相应土壤背景值,Zn、Cu、Pb、Co、Cd、Cr分别是背景值的1.26、1.09、1.17、1.20、6.11、1.29倍,说明这些元素出现了一定程度的积累。单因子评价结果表明Cd污染最为严重,Zn、Cu、Pb、Co和Cr为轻度污染,Fe、Mn和Ni没有污染。综合相关性、聚类及主成分分析可知,Fe和Mn为"自然源因子",不同功能区分布主要受成土母质控制;Zn、Cu、Pb和Cd为"交通及工业活动因子",Cu、Cd高值区均分布在开发区,Zn和Pb的高值区分布在镜湖区;Ni、Co和Cr为"农业活动因子",其空间变异受成土母质及农业活动等因素影响。  相似文献   

18.
Soil, water and vegetation samples were collected from the Triada area of Central Euboea and analysed for heavy metals in order to evaluate their environmental impact. The geology of the area studied includes ultrabasic rocks that are overlaid by Upper Cretaceous limestones whereas Fe–Ni mineralisation is intercalated between either the ultrabasic parent rocks or the karstified Jurassic/Triassic carbonates and the transgessive Upper Cretaceous limestones. All the samples were analysed for heavy metals by using atomic absorption spectroscopy. The heavy metal ranges (in g g–1) for soils samples are: Ni 480–4000, Cr 240–2720, Co 40–208, Fe 24,000–380,000, Mn 46–1680, Pb 16–56, Zn 40–144, Cu 2–82. The values of soil samples of the Triada area are much higher than the values found for Ni, Cr, Co and Fe, in normal soils of the world. The heavy metal ranges (in g L–1) for water samples are: Ni 19–24, Cr 19–476, Co <5, Fe <100, Mn <100, Mg 5.7–220.5, As 30–69, Cd <2, Pd <10, Zn 5–11, Cu 2–7. The water samples of the Triada area have Cr and Mg concentrations higher than the permittable values. The heavy metal ranges (in g g–1) for vegetation samples are: Ni 1–135, Cr 0–24, Co 1–21.5, Fe 20–680, Mn 10–206, Cd 0–10, Pb 0–14, Zn 14–70, Cu 0–10.5. The vegetation samples of the Triada area have so high values of Ni, Cr and Co that are considered toxic. The intercorrelated elements Fe, Ni, Cr, Co of the Triada soils, waters and vegetation reflect their association with the ultrabasic rocks and with the Fe–Ni mineralisation.  相似文献   

19.
淮南市城区地表灰尘重金属分布特征及生态风险评价   总被引:5,自引:0,他引:5  
城市地表灰尘中重金属会对人体健康和生态环境产生危害,为研究城市中不同功能区地表灰尘重金属的含量和潜在生态危害水平,以典型煤炭资源型城市淮南市的地表灰尘为研究对象,采集工业区、商业区、交通区、文教区、居住区和公园绿地等6种功能用地共40个点位的地表灰尘。采用电感耦合等离子体发射光谱(ICP-OES)和DMA-80直接测汞仪测定Zn、Pb、Cu、Cr、Cd、Ni、Co、V、Hg的含量,分析其在不同功能区地表灰尘中的分布特征、相关性及可能的来源;并应用潜在生态危害指数法对重金属在不同功能区的潜在生态危害进行评价。结果表明:1)淮南市地表灰尘中 Zn、Pb、Cu、Cr、Cd、Ni、Co、V、Hg的平均质量分数分别是202.59、74.63、62.74、110.69、0.57、35.82、12.18、50.95和0.105 mg·kg-1,其中Zn、Pb、Cu、Cr、Cd、Ni、Hg的平均含量分别是淮南市土壤背景值的3.47、3.17、2.04、1.21、9.50、1.12、2.56倍,是中国土壤背景值的2.73、2.87、2.78、1.81、5.88、1.33、1.62倍。2)9种重金属中,Zn和V的含量在不同功能区分布相对均匀,其他重金属在不同功能区含量均表现出较明显的空间异质性。3)不同功能区中,Zn、Pb、Cu、Ni、Co、V、Hg的平均含量在工业区最高,Cr 和 Cd 的平均含量在交通区最高。4)不同重金属的相关性表明,Zn、Pb、Cu、Cd、Ni 等5种元素有同一来源,Co 和 V 有同一来源。5)单项潜在生态危害系数大小为 Cd〉Hg〉〉Pb〉Cu〉Ni〉Co〉Zn〉Cr〉V。不同功能区9种重金属复合生态危害均处于强生态危害水平(300≤RI〈600),其中工业区和交通区潜在生态危害水平最高。  相似文献   

20.
A Geochemical Survey of Topsoil in the City of Oslo, Norway   总被引:9,自引:0,他引:9  
The city of Oslo is situated centrally in the Oslo-graben, which is a Permian rift basin consisting of different kinds of volcanic and sedimentary rocks. In the summer of 1998, approximately 300 samples of surface soil (2–3cm) were taken systematically, 1km–2. The investigated area covers about 500km2. Samples were dissolved in 7M HNO3 and analysed for 29 elements with ICP-AES, mercury with cold-vapour technique (CV-AAS) and arsenic and cadmium with a graphite furnace (GF-AAS). A factor analysis is frequently used to identify relationships among sets of interrelated variables. To describe the covariant relationships among the elements, a factor analysis has been completed. The first factor contains the elements Sc, Fe, Li, Co, Al, Cr, Be, K, Ni, V, Mg, Y, Ba, Zr, Mn and As (listed with decreasing communality). These elements are typical for the minerals in the area and most of these elements have a near normal distribution. Sources for this factor are probably geological. The second factor contains Cd, Hg, P, Zn, Cu, Ba and Pb. They have a log-normal distribution. Road traffic is probably one of the sources contributing to this factor. In Norway studded tyres are used frequently in the winter season which results in large amounts of road dust. Leaded petrol has been a major source for Pb but is not in use any more. Wear and tear of tyres and brakes contribute also to this factor. Other sources contributing to this factor are probably industry, rubbish incineration, crematoria and release of some of these elements from structural material by fire. Factors 3, 4 and 6 with elements such as Ca, Na, La, Ti and Sr probably have geological sources. They are associated with minerals like amphiboles, pyroxenes and feldspars and some of the elements are from sea aerosols. Factor 5 contains Mn, Cd, Zn, As and Pb. Manganese may be derived from many different sources such as rock weathering, windblown dust, agriculture and traffic. Since As and Mn are placed in both factor 1 and 5 they probably have both geological and anthropogenic sources. Concentrations of the elements in the second factor are much higher in the central parts of Oslo, than in the rest of Oslo. The median value of Hg in the centre is 0.48mgkg–1, which is 8 times higher than that in the rest of the city. Also, the other elements have much higher levels in the centre. The industrial district north-east of the centre also has high values. The distribution of arsenic is regular throughout the whole city, but has a slightly higher level in the centre. Norm values for contaminated land used by the Norwegian authorities are 2mg As kg–1 and 25mg Cr kg–1. Of 297 samples, 61% contain more than 25mg Cr kg–1 and 79% more than 3mg As kg–1, which is the detection limit of the analysis. These samples will therefore be regarded as contaminated. Factor analysis places these elements in the geological factor. The Norm value of zinc is 150mgkg–1, and 40% of the samples contain more than this. The Norm value of lead is 150mgkg–1, and 35% of the samples contain. Road traffic is probably the major source for these elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号