首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background, aim, and scope

Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated.

Approach

We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries.
  • Have climate change and land-use change increased erosion and sediment loads in rivers?
  • Do we have indications of an increase in riverbed clogging?
  • Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging?
  • Results

    Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish.

    Discussion

    Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades.

    Conclusions

    Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor.

    Recommendations and perspectives

    Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.  相似文献   

    2.

    Introduction

    The Zha Long Wetland, the first water bird conservation area in China, lies on the northern bank of the Song Nen Plain with an area of 2,100 km2. In many areas of the Zha Long Wetland, water pollution has led to a decrease in the wetland??s ecological function, vegetation degradation, a decrease in the number of bird species, and the depletion of fish resources.

    Materials and methods

    The sediments used in this study were collected from the surface sediment of seven sites and from different depths in three types of marshes in the Zha Long Wetland in northeast China in late October 2006. The levels and distribution patterns of 17 organochlorine pesticides (OCPs; ??-HCH, ??-HCH, ??-HCH, ??-HCH, p,p??-DDE, p,p??-DDD, p,p??-DDT, endosulfan I, endosulfan II, endosulfan sulfate, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin, endrin aldehyde, and methoxychlor) in surface sediments as well as hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) in vertical sediments were investigated.

    Results and discussion

    The concentrations of HCHs, DDTs, endosulfans, heptachlors, aldrin, and methoxychlor in surface sediments ranged from 10.44 to 41.97 ng/g, nd (undetectable levels) to 211.88 ng/g, nd to 69.89 ng/g, nd to 28.10 ng/g, 9.81 to 623.83 ng/g, and from nd to 3.99 ng/g, respectively. The highest levels of OCPs were detected in Tangtugangzi at a total concentration of 727.72 ng/g, where the dominant compound was endrin at a concentration of 483.04 ng/g. In the vertical sediments, the HCHs and DDTs were in the ranges of nd?C136.00 and nd?C214.06 ng/g, respectively.

    Conclusions

    Different distributions of HCHs, DDTs, and other OCPs indicated that they originated from different contamination sources. Composition analyses in surface sediments indicated recent OCP usage or discharge at some sample sites in the Zha Long Wetland.  相似文献   

    3.

    Introduction

    Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1???g?L?1 for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources.

    Materials and methods

    Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH.

    Results and discussion

    The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64???g?mg?1 which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300?mg?L?1 for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0???g?L?1) of 3,640?L could be treated by 1?g of MIP with an estimated cost of US $1.5.

    Conclusions

    The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.  相似文献   

    4.

    Introduction

    Magnetic Fe3O4 nanoparticles were prepared by coprecipitation and then were coated with SiO2 on the surface.

    Materials and methods

    Fe3O4@SiO2 composite microspheres were modified by KH570. Using molecular imprinting technology, atrazine magnetic molecularly imprinted polymer was prepared by using atrazine as template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linkers. The morphology, composition and magnetic properties of magnetic nanoparticles were characterized. The recognition selectivity of polymer was studied for template molecule and simulation by UV spectrophotometry. The adsorption properties and selectivity ability were analyzed by Scatchard analysis.

    Results

    Scatchard linear regression analysis indicated that there are two binding sites of the target molecules. The magnetic molecularly imprinted polymer has been applied to the analysis of atrazine in real samples.

    Conclusion

    The results show that: the recovery rates and the relative standard deviation were 94.0??98.7% and 2.1??4.0% in corn, the recovery rates and the relative standard deviation were 88.7??93.5% and 2.8??7.2% in water.  相似文献   

    5.

    Introduction

    The future ??Calanque National Park?? coastlines of the Bouches-du-Rh?ne and Var departments in France, constitute one of the ten biodiversity hot spots identified in the Mediterranean basin that receives industrial and urban wastewaters discharged from Marseille and its suburbs.

    Materials and methods

    Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) were measured in sediments collected from 12 sampling sites (C1?CC12) of sewage discharge to the sea from the wastewater treatment plant of Cortiou-Marseille. This study aims to determine the extent of these compounds in the sediments and to establish the possible sources of these contaminants.

    Results and discussion

    Total pesticides in the sediments ranged from 1.2 to 190.6 ng g-1 dry weight of sediment. The highest value was found at station C1, with a decreasing trend in total OC concentrations seaward. Among these compounds, the concentrations of the sum of dichlorodiphenyltrichloroethane (??DDT) were the highest, ranging from 0.7 to 114.3 ng g-1. PCB concentrations, expressed as equivalent to Arochlor 1260, varied from 9.1 to 226.9 ng g-1. Individually, the dominant coplanar PCB congeners CB-153, CB-138 and CB-101. Generally, PCB concentrations at stations C2, C3, C5 and C7 were higher than those at stations C10, C11 and C12. Through some pollution indices, we showed the long-term contamination input of these OCs (DDT, endosulfan, HCH and heptachlor cases) rather than a recent release resulting from degradation and long-term weathering (dieldrin, aldrin and methoxychlor cases). Occurrence of PCBs might be due to their resistance to degradation processes or/and chronic inputs.

    Conclusions

    By comparison with available sediment quality guideline (SQG) values, the environmental significance and toxicological implications of PCBs and OCs (i) reveal the probable adverse effects for the sediments from C1, C5, C6, C9 and (ii) confirm the adverse effect for marine biota and more particularly for benthic communities at C2?CC4, C7 and C8.  相似文献   

    6.

    Introduction

    Efficient immobilization of TiO2 nanoparticles on the surface of Mg2Al-LDH nanosheets was performed by delamination/restacking process.

    Experimental part

    The structural and textural properties of as-prepared nanocomposite were deeply analyzed using different solid-state characterization techniques such as: X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopies, chemical analysis, X-ray photoelecton spectroscopy, N2 adsorption?Cdesorption, and electronic microscopy.

    Results and discussion

    The photocatalytic properties of immobilized TiO2 nanoparticles on Mg2Al were investigated using the photodegradation of two model pollutants: Orange II and 4-chlorophenol, and compared with pure colloidal TiO2 solution.

    Conclusion

    It appears that Orange II photodegradation was systematically faster and more efficient than 4-chlorophenol photodegradation regardless of the medium pH. Moreover under slightly basic conditions, even if the TiO2 photocatalytic efficiency decreases, photodegradation performed in presence of easily recovered TiO2/Mg2Al1.5 nanocomposite gives rise to comparable or better results than pure TiO2.  相似文献   

    7.

    Introduction

    Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient.

    Materials and methods

    The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis?Cmultiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal.

    Results and discussion

    Ranges of PAH and PCB concentrations in surface sediments were 0.66?C22?mg/kg and 0.5?C93???g/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs.

    Conclusions

    PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.  相似文献   

    8.

    Background

    In this paper, batch removal of hexavalent chromium from aqueous solutions by Araucaria heterophylla leaves was investigated. The batch experiments were conducted to study the adsorption of metal species and effect of different pH, contact time, metal concentration, biosorbent concentration, and adsorption capacity.

    Method

    Freundlich and Langmuir??s isotherm model were used to describe the adsorption behavior, and the experimental results fitted Freundlich model well.

    Results

    The adsorption efficiency observed for all chromium concentrations, i.e., 1, 3, 5, and 10?mg/L was 100% and the equilibrium was achieved in 30?min for 1 and 3?mg/L, whereas for 5 and 10?mg/L, it was less than 60?min. FTIR spectra was taken to identify functional groups involved in the biosorption.

    Conclusion

    Thus, Araucaria leaves can be considered as one of the cheap and efficient biosorbent for toxic hexavalent chromium removal from natural or wastewaters.  相似文献   

    9.

    Introduction and aims

    The dominance of a plant species in highly metal-contaminated areas reflects its tolerance or adaptability potential to these scenarios. Hence, plants with high adaptability and/or tolerance to exceptionally high metal-contaminated scenarios may help protect environmental degradation. The present study aimed to assess the strategies adopted by common reed, Phragmites australis for its dominance in highly mercury-contaminated Ria de Aveiro coastal lagoon (Portugal).

    Materials and methods

    Both plant samples and the sediments vegetated by monospecific stand of Phragmites australis were collected in five replicates from mercury-free (reference) and contaminated sites during low tide between March 2006 and January 2007. The sediments?? physico-chemical traits, plant dry mass, uptake, partitioning, and transfer of mercury were evaluated during growing season (spring, summer, autumn, and winter) of P. australis. Redox potential and pH of the sediment around roots were measured in situ using a WTW-pH 330i meter. Dried sediments were incinerated for 4?h at 500??C for the estimation of organic matter whereas plant samples were oven-dried at 60??C till constant weight for plant dry mass determination. Mercury concentrations in sediments and plant parts were determined by atomic absorption spectrometry with thermal decomposition, using an advanced mercury analyzer (LECO 254) and maintaining the accuracy and precision of the analytical methodologies. In addition, mercury bioaccumulation and translocation factors were also determined to differentiate the accumulation of mercury and its subsequent translocation to plant parts in P. australis.

    Results and conclusions

    P. australis root exhibited the highest mercury accumulation followed by rhizome and leaves during the reproductive phase (autumn). During the same phase, P. australis exhibited ??5 times less mercury-translocation factor (0.03 in leaf) when compared with the highest mercury bioaccumulation factor for root (0.14). Moreover, seasonal variations differentially impacted the studied parameters. P. australis?? extraordinary ability to (a) pool the maximum mercury in its roots and rhizomes, (b) protect its leaf against mercury toxicity by adopting the mercury exclusion, and (c) adjust the rhizosphere-sediment environment during the seasonal changes significantly helps to withstand the highly mercury-contaminated Ria de Aveiro lagoon. The current study implies that P. australis has enough potential to be used for mercury stabilization and restoration of sediments/soils rich in mercury as well.  相似文献   

    10.

    Introduction

    Dissolved organic matter (DOM) is the most active component in environmental system and its chemical and structural characteristics most likely influence its biodegradation. Four surface soil (0?C20?cm) and three core sediment samples (0?C10?cm) were collected from Wuliangsuhai Lake. The objectives of this study were to investigate the spectral properties and humification degree of DOM and to determine and discuss comparatively the complexing capacities and stability constants of DOM by Cu (II) in the Hetao region.

    Materials and methods

    In this study, fluorescence spectra and fluorescence quenching methods were used to evaluate the humification degree of DOM and calculate the complexing capacities and the stability constants between DOM and Cu (II).

    Results and discussion

    Two defined peaks, at wavelengths of 260??300?nm (peak I) and 300??350?nm (peak II), could be identified for soil DOM at a ???? value of 30?nm. In sediment DOM extracts, a third peak (III) was observed near 364?nm. The results show that there is a significant difference in the structure of DOM because of different sources. The humification degree is significantly higher for soil samples than those of sediment samples. The FT-IR spectra of DOM show that structure in sediment DOM is more functional groups than those in soil DOM. DOM has a stronger Cu binding affinity in soils than in sediment in the Hetao region, which may lead to potentially significant influence on the migration and transformation of Cu (II).  相似文献   

    11.

    Background, aim and scope

    The influence of pH (range 6.5–8.5) on the uptake of Zn, Cd, Pb, Cu, Ni, Cr, Hg, and As by juveniles of the clam Ruditapes philippinarum was examined in order to understand whether variation in sediment pH has significant repercussions on metal bioaccumulation.

    Materials and methods

    Clams were exposed to sediments collected in three locations in the Gulf of Cadiz (Huelva, Guadalquivir and Bay of Cadiz) and to contaminated particles derived from an accidental mining spill in Spain.

    Results

    With a notable exception of metal Cd, the concentration of metals within clams significantly increased (p?<?0.1) when sediment pH was lowered by one or two units. Moreover, the magnitude of this effect was dependent on the type of sediment contamination.

    Discussion

    Lower pH increases metal solubility and reduces or invert the metal sorption of metals to sediments. Increases in free metal ions in water favors metal uptake by clams, hence pH is an important factor controlling the mobility of these metals within sediments and their subsequent bioaccumulation within biota. Although sediment-water exchange of Cd can increase with acidification, this excess may be counterbalanced by the presence of ligands in seawater preventing the uptake by organism. Besides chlorines, Cd has also an affinity with carbonates and other ligands present in sea water. These Cd-carbonate complexes may reduce the bioavailable to organisms.

    Conclusions

    These results highlight the potential implications of sediment acidification, either due to the storage excess of organic matter or to the forced capture of CO2, on the increasing metal availability to benthic organisms.

    Recommendations and perspectives

    This kind of studies should be increased to address the influence of acidification in the behavior, bioavailability, toxicity, and risk assessment of contaminants associated with sediments either above sub-seabed geological formations in marine environments or in high enriched by organic matter in estuarine areas. Recently, the capture of CO2 in marine environments has been approved and started; it is necessary to address the potential impacts associated with leakages or other events occurring during the procedure of injection and storage of CO2.  相似文献   

    12.

    Purpose

    The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

    Methods

    Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

    Results

    The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

    Conclusions

    L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

    13.

    Purpose

    Perfluorooctane sulfonate (PFOS) belongs to a group of chemicals called perfluoroalkyl acids that have been extensively used in various applications such as stain and oil resistant treatments for fabrics, fire-fighting foams, and insecticides. These chemicals present an environmental and health risk being present in many samples both in wildlife and humans. In this study, we investigate the effect of PFOS on fatty acid ??-oxidation in developing chicken embryos.

    Methods

    Fertilized chicken eggs were exposed in ovo to PFOS at day?4 of incubation. On day?10, the eggs were dissected and livers were incubated in vitro with 3H-palmitic acid for 2?h. The media were collected, and after clean up, the amount of tritiated water was measured with liquid scintillation counting to determine the rate of palmitic acid ??-oxidation.

    Results

    PFOS was found to induce fatty acid ??-oxidation at doses starting from a lowest observed effect level (LOEL) of 0.1???g/g egg weight. Maximum induction of 77?% compared to control was seen at 0.3???g/g.

    Conclusions

    The administered doses in which effects are seen are around and even lower than the levels that can be found in wild populations of birds. General population human levels are a factor of two to three times lower than the LOEL value of this study. The environmental contamination of PFOS therefore presents a possibility of effects in wild populations of birds.  相似文献   

    14.

    Purpose

    The aim of this work was to assess the levels of copper and zinc in fish from the main freshwater ecosystems of Moldova, in relation with species, habitat, age, sex, season, and development stage.

    Methods

    Fish from Cyprinidae and Percidae families (Cyprinus carpio, Carassius auratus gibelio, Rutilus rutilus heckeli, Abramis brama, Aristichthys nobilis, Hypophtalmichthys molitrix, Sander lucioperca) were collected from Prut and Dniester rivers, Cuciurgan, Dubasari, and Costesti-Stanca reservoirs, and ponds of farms in the Dniester delta. The Cu and Zn content of fish tissues (skeletal muscles, liver, gonads, gills, skin, and scales) was determined by flame atomic absorption spectrophotometer AAS-3, of water by graphite furnace HGA 900 of AAnalist 400.

    Results

    The level of heavy metals accumulation in muscles of immature fish follows their dynamics in water. The highest concentration of zinc was registered in the gonads of mature fish, and of copper??in the liver. The lowest Cu and Zn contents were recorded in the muscles and are in the United Nations Food and Agriculture Organization safety-permissible levels for human consumption. Cu and Zn contents in muscles of fish depend on specimen age. Their level in fish gonads was sharply increasing during pre-spawning period. During the early developmental stages, the metal concentration in fish eggs and larvae varies within wide limits, but the accumulation pattern is similar in the investigated species.

    Conclusions

    The fish represent one of the most indicative factors for the estimation of trace metals pollution in freshwater systems and this is important not only for monitoring purposes, but also for the fish culture ones.  相似文献   

    15.

    Purpose

    Heavy metals have been detected in water and sediments from the Embalse La Florida, an artificial lake in the arid region of San Luis province, Argentina, representing one of the few sources of permanent water for reproduction of native anuran species. This study assesses lead (Pb) and cadmium (Cd) concentrations in the anuran species found in this water reservoir as well as differences between compounds, species and sites of collection.

    Methods

    Adult anuran amphibians were collected on the north and south shores of the Embalse La Florida and Pb and Cd concentrations were measured in whole body homogenates digested using wet ashing techniques.

    Results

    All individuals of the six species assayed had detectable levels of Pb and Cd that ranged from 1.19 to 5.57 ??g/g dry mass and from 1.09 to 6.86 ??g/g dry mass, respectively. Anuran amphibians collected in the more contaminated south shore accumulated 21% more Cd and 40% more Pb than individuals from the less altered north shore. Cd and Pb accumulation was not significantly correlated with the concentration in water at the site of collection.

    Conclusions

    Amphibians of the Embalse La Florida accumulate Cd and Pb. Between and within species, differences were detected in Cd and Pb concentrations. Differences in metal concentrations between species, metals, and individuals collected on shores of the Embalse La Florida with different contamination, were detected. Therefore, it is crucial to implement adequate policies to protect amphibians from the accelerated urban development experienced in this location.  相似文献   

    16.

    Introduction

    The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses.

    Materials and methods

    Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation.

    Results

    The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV?CVisible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses.

    Conclusion

    The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.  相似文献   

    17.

    Purpose

    The aim of this study was assess co-exposure to DDT, DDE (main DDT metabolite), and PAHs (1-hydroxypyrene) in areas where biomass is used to cook and to heat homes and where DDT was used to combat malaria transmission.

    Methods

    During 2009, we analyzed a total of 190 blood and urine samples from children living in six communities in Mexico. Quantitative analyses of DDT and DDE were performed using gas chromatography coupled with mass spectrometry. Analyses of 1-hydroxypyrene were performed by HPLC using a fluorescence detector.

    Results

    In this work, we found high levels of DDT and its principal metabolite (DDE) in the blood of children living in four communities in Chiapas located in the southeastern region of Mexico (range, Conclusion This study demonstrates that children in these communities were exposed to DDT and its metabolites, and to other contaminants generated by the combustion of firewood. Therefore, the complex mixture studied in this study (PAHs and DDT/DDE) requires further research.  相似文献   

    18.

    Purpose

    The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated.

    Methods

    The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH?2 and 8.

    Results

    The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid?Cbase properties, point of zero charge??pHpzc). The solution pH influences both the sorbent??s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH?2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH?2 experimental data to which the Freundlich model fitted better.

    Conclusion

    Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.  相似文献   

    19.

    Introduction and purpose

    The objective of this study is to determine children??s blood lead levels and identify sources of lead exposure. Childhood lead exposure constitutes a major pediatric health problem today in China. A blood lead screening survey program for children in the age group of 2?C12?years residing in Pearl River Delta region, south of China, was carried out from Dec 2007 to Jan 2008.

    Methods

    Blood lead levels and lead isotope ratios of a total of 761 participants were assessed by inductively coupled plasma mass spectroscopy. Measurements of urban environmental samples for source identification of children lead exposure were also performed.

    Results and conclusions

    The geometric mean value of the children??s blood lead levels was 57.05???g/L, and 9.6% of them were higher than 100???g/L. The blood lead levels were still much higher than those in developed countries. Based on the data of environmental lead source inventories, lead isotopic tracing revealed that there is about 6.7% past used gasoline Pb embedded in Shenzhen residential dust and about 15.6% in Guangzhou dust, respectively.  相似文献   

    20.

    Purpose

    Removal of malathion from agricultural runoff was studied using novel copper-coated chitosan nanocomposite (CuCH)??a biopolymeric waste obtained from marine industry.

    Methods

    Synthesis and characterization of the adsorbent using different spectral techniques like Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer, Emmett, and Teller surface analyzer have been carried out. Equilibrium studies have been carried out to optimize the dose rate, pH, and the reaction time. Parathion and methyl parathion removal were also evaluated by CuCH in the batch mode. Using gas chromatography?Cmass spectrometry (GC?CMS) and FTIR studies suitable mechanism for adsorption has been suggested.

    Results

    The particle size of the adsorbent ranged from 700 to 750?nm. The surface area was found to be 20?m2?g-1 with a pore volume of 0.11?cc?g-1. The maximum adsorption capacity of malathion by CuCH was found to be 322.6?±?3.5?mg?g-1 at an optimum pH of 2.0. Presence of copper ions enhanced the adsorption capacity of the adsorbent. The reaction was found to follow pseudo second-order kinetics with a rate constant of 0.53?g?mg-1?min-1. Evidence from FTIR indicated that copper ions form a dithionate complex with malathion during the adsorption stage. The adsorbent was found to remove malathion completely from spiked concentration of 2?mg?l-1 in the agricultural run-off samples. It was also found that CuCH removed other organophospurous pesticides like methyl parathion and parathion under prevailing conditions.

    Conclusions

    The results indicated that CuCH could be applied for the removal of organophosphorous pesticides.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号