首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where different sampler types are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a bronze foundry where lead is added to an alloy of copper, zinc and iron to improve casting, using the closed-face 37 mm cassette, the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). For lead, all five samplers gave correlations (r(2)) greater than 0.9 between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). However, a correction was required to adjust linear regression trendlines to give a 1 : 1 correlation for the average of three readings across the GSP sampler, and a similar correction was required for the single readings from the IOM sampler and the 25 mm filter cassette. The bias possibly is due to interference from other metals, possibly copper which can absorb the fluorescent radiation of lead. In the case of the Button sampler, the bias is larger, indicating a further source of error, perhaps due to the thickness of the deposit. However, in all cases, correction of the lead results did not greatly affect the overall percentage of samples where the XRF result was within 25% of the ICP result, although it did improve the overall accuracy of the results. The GSP, IOM and Button samplers are suitable candidates for further evaluation as compatible with on-site XRF analysis for lead and other metals. It is important to check carefully factory pre-set instrument calibrations, as a bias in the calibration for copper was observed.  相似文献   

2.
A method has been described previously for determining particle size distributions in the inhalable size range collected by personal samplers for wood dust. In this method, the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood-dust particles which are generally large and close to rectangular prisms in shape. The method was used to investigate the differences in total mass found previously in studies of side-by-side sample collection with different sampler types. Over 200 wood-dust samples were collected in three different wood-products industries, using the traditional 37 mm closed-face polystyrene/acrylonitrile cassette (CFC), the Institute of Occupational Medicine (IOM) inhalable sampler, and the Button sampler developed by the University of Cincinnati. Total mass concentration results from the samplers were found to be in approximately the same ratio as those from traditional long-term gravimetric samples, but about an order of magnitude higher. Investigation of the size distributions revealed several differences between the samplers. The wood dust particulate mass appears to be concentrated in the range 10-70 aerodynamic equivalent diameter (AED), but with a substantial mass contribution from particles larger than 100 microm AED in a significant number of samples. These ultra-large particles were found in 65% of the IOM samples, 42% of the CFC samples and 32% of the Button samples. Where present, particles of this size range dominated the total mass collected, contributing an average 53% (range 10-95%). However, significant differences were still found after removal of the ultra-large particles. In general, the IOM and CFC samplers appeared to operate in accordance with previous laboratory studies, such that they both collected similar quantities of particles at the smaller diameters, up to about 30-40 [micro sign]m AED, after which the CFC collection efficiency was reduced dramatically compared to the IOM. The Button sampler collected significantly less than the IOM at particle sizes between 10.1 and 50 microm AED. The collection efficiency of the Button sampler was significantly different from that of the CFC for particle sizes between 10.1 and 40 microm AED, and the total mass concentration given by the Button sampler was significantly less than that given by the CFC, even in the absence of ultra-large particles. The results are consistent with some relevant laboratory studies.  相似文献   

3.
Personal and area air samples were taken at a scrap lead smelter operation in a bullet manufacturing facility. Samples were taken using the 37-mm styrene-acrylonitrile closed-face filter cassette (CFC, the current US standard device for lead sampling), the 37-mm GSP or "cone" sampler, the 25-mm Institute of Occupational Medicine (IOM) inhalable sampler, and the 25-mm Button sampler (developed at the University of Cincinnati). Polyvinylchloride filters were used for sampling. The filters were pre- and post-weighed, and analyzed for lead content using a field-portable X-ray fluorescence (XRF) analyzer. The filters were then extracted with dilute nitric acid in an ultrasonic extraction bath and the solutions were analyzed by inductively coupled plasma optical emission spectroscopy. The 25-mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37-mm filters. The single reading from the 25-mm filters was adjusted for the nominal area of the filter to obtain the mass loading, while the three readings from the 37-mm filters were inserted into two different algorithms for calculating the mass loadings, and the algorithms were compared. The IOM sampler was designed for material collected in the body of the sampler to be part of the collected sample as well as that on the filter. Therefore, the IOM sampler cassettes were rinsed separately to determine if wall-loss corrections were necessary. All four samplers gave very good correlations between the two analytical methods above the limit of detection of the XRF procedure. The limit of detection for the 25-mm filters (5 microg) was lower than for the 37-mm filters (10 microg). The percentage of XRF results that were within 25% of the corresponding ICP results was evaluated. In addition, the bias from linear regression was estimated. Linear regression for the Button sampler and the IOM sampler using single readings and the GSP using all tested techniques for total filter loading gave acceptable XRF readings at loadings equivalent to sampling at the OSHA 8-hour Action Level and Permissible Exposure Limit. However, the CFC only had acceptable results when the center reading corrected for filter area was used, which was surprising, and may be a result of a limited data set. In addition to linear regression, simple estimation of bias indicated reasonable agreements between XRF and ICP results for single XRF readings on the Button sampler filters, (82% of the individual results within criterion), and on the IOM sampler filters (77% or 61%--see text), and on the GSP sampler filters using the OSHA algorithm (78%). As a result of this pilot project, all three samplers were considered suitable for inclusion in further field research studies.  相似文献   

4.
In 1998 the American Conference for Governmental Industrial Hygienists (ACGIH) proposed size selective sampling for wood dust based on the inhalable fraction. Thus the proposed threshold limit values (TLVs) require the use of a sampler whose performance matches the inhalable convention. The Institute of Occupational Medicine (IOM) sampler has shown good agreement with the inhalable convention under controlled conditions, and the Button sampler, developed by the University of Cincinnati, has shown reasonable agreement in at least one laboratory study. The Button sampler has not been previously evaluated under wood working conditions, and the IOM has been shown to sample more mass than expected when compared to the standard closed-face cassette, which may be due to the collection of very large particles in wood working environments. Some projectile particles may be > 100 microm aerodynamic diameter and thus outside the range of the convention. Such particles, if present, can bias the estimates of concentration considerably. This study is part of an on-going research focus into selecting the most appropriate inhalable sampler for use in these industries, and to examine the impact of TLV changes. This study compared gravimetric analyses (National Institute of Occupational Safety and Health Method 0500) of side-by-side personal samples using the Button, IOM, and 37 mm closed-face cassette (CFC) under field-use conditions. A total of 51 good sample pairs were collected from three wood products industries involved in the manufacturing of cabinets, furniture, and shutters. Paired t-tests were run on each sample pair using Statistical Package for the Social Sciences (SPSS) version 10. The IOM and the CFC measured statistically different concentrations (p < 0.0005, n = 16). The IOM and Button measured statistically different concentrations (p = 0.020, n = 12). The Button and CFC did not measure statistically different concentrations of wood dust (p = 0.098, n = 23). Sampler ratios for IOM/CFC pairs ranged from 1.19-19 (median 3.35). Sampler ratios for IOM/Button pairs ranged from 0.49-163 (median 3.15). Sampler ratios for CFC/Button pairs ranged from 0.36-27 (median 1.2). In all cases, higher ratios were associated with higher concentrations. The median relative difference between the IOM's and CFC's is in accord with prior field studies in woodworking environments, and, taken together, the data imply a conversion factor greater than the 2.5 normally applied to CFC results to approximate inhalable values, as measured by the IOM. Raising the limit values by approximately 50% appears warranted for this particular situation of inhalable wood dust measured by the IOM. The IOM/Button and CFC/Button ratios were unexpectedly low, which may be due to the exclusion of very large particles, collected by the IOM and CFC samplers. Further work is required to explain these results.  相似文献   

5.
Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass, which encompassed the permissible exposure limit of 150 mg m(-3) enforced in the USA by the Mine Safety and Health Administration (MSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects from the presence of iron and zinc in the samples. An approximately 10% negative bias was found for the slope of the Button sampler regression, in line with other studies, but it did not significantly affect the accuracy as all XRF results from this sampler were within 20% of the corresponding ICP values. As in previous studies, the best results were obtained with the GSP sampler using the average of three readings, with all XRF results within 20% of the corresponding ICP values and a slope close to 1 (0.99). Greater than 95% of XRF results were within 20% of the corresponding ICP values for the closed-face 37 mm cassette using the OSHA algorithm, and the IOM sampler using a sample area of 3.46 cm2. As in previous studies, considerable material was found on the interior walls of all samplers that possess an internal surface for deposition, at approximately the same proportion for all samplers. At the lead-acid battery recycler all five samplers in their optimal configurations gave good correlations (r2 > 0.92) between the two analytical methods over the entire range of found lead mass, which included the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations (except for the Button sampler), indicating an absence of matrix effects from the presence of the smaller quantities of the other metals in the samples. A negative bias was found for the slope of the button sampler regression, in line with other studies. Even though very high concentrations of lead were encountered (up to almost 6 mg m(-3)) no saturation of the detector was observed. Most samplers performed well, with >90% of XRF results within +/- 25% of the corresponding ICP results for the optimum configurations. The OSHA algorithm for the CFC worked best without including the back-up pad with the filter.  相似文献   

6.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where various types of sampler are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a manufacturer of solder alloys consisting mainly of lead and tin, using the closed-face 37 mm cassette (CFC), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). The internal surfaces of CFC's and 25 mm open-face cassettes were also wiped, and the wipes analyzed for lead to assess wall-losses in these two samplers. Analysis of all elements present is useful to ascertain contributions to matrix interference effects. In addition to lead, other metals such as tin, copper, iron, silver, cadmium and antimony were also detected in some or all of the samples by ICP analysis, but only copper and iron could be determined using the XRF analyzer under test. After the removal of a few outliers, all five samplers gave good correlations (r(2) > 0.9) between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects, particularly from tin, which was the most common element after lead. The average of three XRF readings across filters from the GSP samplers gave the best results with 96.7% of results within +/-25% and 100% within +/-30% of the associated ICP values. Using the center reading only was almost as good with 90.0% of results within +/-25% and 96.7% within +/-30% of the associated ICP values, and results can be obtained faster with a single reading. The use of an algorithm developed by OSHA for three readings from the CFC filter samples gave the next best results with 93.3% of XRF results within +/-25% of the corresponding ICP values. However, analysis of wipes from the interior of the cassettes indicated a substantial loss of sample to the walls, and even larger wall-losses were encountered in the 25 mm open-face cassette. Neither this latter sampler nor the IOM or button sampler met the 95% criterion, even for +/-30% accuracy.  相似文献   

7.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   

8.
An understanding of the scaling laws governing aerosol sampler performance leads to new options for testing aerosol samplers at small scale in a small laboratory wind tunnel. Two methods are described in this paper. The first involves an extension of what is referred to as the "conventional" approach, in which scaled aerosol sampler systems are tested in a small wind tunnel while exposed to relatively monodisperse aerosols. Such aerosols are collected by test and reference samplers respectively and assessed gravimetrically. The new studies were carried out for a modified, low flowrate version of the IOM personal inhalable aerosol sampler. It was shown that such experiments can be carried out with a very high level of repeatability, and this supported the general validity of the aerosol sampler scaling laws. The second method involves a novel testing system and protocol for evaluating the performances of aerosol samplers. Here, scaled aerosol samplers of interest are exposed to polydisperse aerosols, again in a small wind tunnel. In this instance, the sampled particles are counted and sized using a direct-reading aerodynamic particle sizer (the APS). A prototype automated aerosol sampler testing system based on this approach was built and evaluated in preliminary experiments to determine the performance of another modified version of the IOM personal inhalable aerosol sampler. The design of the new test system accounts for the complex fluid mechanical coupling that occurs near the sampler inlet involving the transition between the external flow outside the sampler and the internal airflow inside the sampler, leading in turn to uncontrolled particle losses. The problem was overcome by the insertion of porous plastic foam plugs. where the penetration characteristics are well understood, into the entries of both the test and the reference samplers. Preliminary experiments with this new system also supported the general validity of the aerosol sampler scaling laws. In addition, they demonstrated high potential that this approach may be applied in a standardised aerosol testing method and protocol.  相似文献   

9.
Symptoms such as shortness of breath and cough have been noted in woodworking facilities even where wood dust itself is well-controlled. Suspicion has fallen on other possible contaminants in the workplace atmosphere, including bacterial endotoxin. A few studies have indicated potentially high endotoxin exposure with exposure to fresh wood in sawmills and in the production of fiberboard and chipboard, but fewer studies have been carried out on exposure to endotoxin in dry wood work, for example in joineries. A study of the endotoxin content of airborne wood dust samples from US woodworking facilities is presented, from the re-analysis of samples which previously had been taken to establish mass collection relationships between the IOM sampler, the closed-face 37 mm plastic cassette (CFC) sampler and the Button sampler. Endotoxin was strongly correlated with total dust, but the endotoxin content of a few fresh wood samples was found to be up to ten times higher per unit of wood dust than for dried-wood samples, and this difference was significant. No long-term time-weighted average sample exceeded the recommended limit value of 50 EU m(-3) (EU, endotoxin units)used in the Netherlands, although a number of the IOM samples came close (seven samples or 44% exceeded 20 EU m(-3)) and one short-term (48 minute) sample registered a high value of 73 EU m(-3). The geometric mean concentration from the IOM samples (11 EU m(-3)) is within the range of geometric means found from Australian joineries (3.7-60, combined: 24 EU m(-3)). In contrast, the corresponding values from the CFC (3.6 EU m(-3)), and the Button sampler (2.1 EU m(-3)) were much lower and no samples exceeded 20 EU m(-3). Endotoxin is likely only to be a significant problem in working with dried woods when associated with very high dust levels, where the wood dust itself is likely to be a cause for concern. The results from the few samples in this study where fresh wood was being worked were similar to results from other studies involving fresh woods. The agreement between these studies is encouraging given the difficulties of endotoxin analysis and the wide variation often expected between different laboratories.  相似文献   

10.
In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.  相似文献   

11.
The Respicon has been introduced as a sampler for health related measurements of airborne contaminants at workplaces. The instrument is aimed at simultaneous collection of three health related aerosol fractions: (a) the coarser inhalable fraction, defining the aerosol fraction that may enter the nose and mouth during breathing; (b) the intermediate thoracic fraction, defining the fraction that may penetrate beyond the larynx and so reach the lung; and (c) the finer respirable fraction, defining the fraction that may penetrate to gas exchange region of the lung. The instrument has a number of features attractive to occupational hygienists: in addition to providing the three aerosol fractions simultaneously, it is light and compact enough to be used as a personal sampler. yet can be a tripod mounted for area sampling, it can provide samples not only for gravimetric analysis but also microscopic and chemical analyses; and it is also available in a photometric direct-reading version. The instrument has previously been evaluated as an area sampler and, in this mode of operation, has shown reasonable accuracy in collecting respirable, thoracic and inhalable particles, the latter up to particle diameters of ca. 80 microm. Except for some scattered unpublished data there exist no systematic investigations in the Respicon's performance when used as a personal sampler in the industrial environment. In this paper, we will report on a study of side by side comparison of the Respicon with the IOM inhalable sampler, regarded as a reference instrument for the inhalable fraction. The main study was performed at six different workplaces in a nickel refinery. Statistical analysis of the gravimetrically-determined concentration data reveals consistently lower aerosol exposure values for the Respicon as compared to the IOM sampler. The data for the nickel workplaces are compared with findings from other studies. The results are interpreted in the light of the overall results and the possibility of introducing a correction factor is discussed.  相似文献   

12.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   

13.
This study describes the field evaluation of a tailor-made new glass passive sampler developed for the determination of NO(2), based on the collection on triethanolemine (TEA)-coated fibre filter paper. The sampler has been derived from a Palmes design. The overall uncertainty of the sampler was determined by using Griess-Saltzman ASTM D 1607 standard test method as a reference method. The agreement between the results of the passive sampler and the reference method was +/-7.90% with the correlation coefficient of 0.90. Method precision in terms of coefficient of variance (CV) for three simultaneously applied passive samplers was 8.80%. The uptake rate of NO(2) was found to be 2.49 ml/min in a very good agreement with the value calculated from theory (2.63 ml/min). Sampler detection limit was 1.99 microg/m(3) for an exposure period of 1 week and the sampler can be stored safely for a period of up to 6 weeks before exposure. A comparison of the sampler performance was conducted against a commercially available diffusion tube (Gradko diffusion tube). The results from the applied statistical paired t test indicated that there was no significant difference between the performances of two passive samplers (R (2) > 0.90). Also, another statistical comparison was carried out between the dark and transparent glass passive samplers. The results from the dark-colour sampler were higher than that from the transparent sampler (approximately 25%) during the summer season because of the possible photodegradation of NO(2)-TEA complex.  相似文献   

14.
Two types of passive sampler were developed for the long-term monitoring of semivolatile organic compounds (SOCs) in air. They consist of poly(dimethylsiloxane) (PDMS)-coated stir bars (type A) or silicone tubing (type B), acting as a solid receiving medium, enclosed in a heat-sealed low-density polyethylene (LDPE) membrane. These samplers combine the advantages of integrative passive sampling with those of analysing accumulated analytes by thermodesorption-GC-MS, whilst avoiding the use of solvents and expensive sample preparation and cleanup steps. The performance of these samplers was investigated for the integrative sampling of SOCs, including alpha- and gamma-hexachlorocyclohexanes, hexachlorobenzene, 2,4,4'-trichlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl and fluoranthene, in laboratory exposure experiments under controlled conditions. For both types of sampler, the uptake of all the analytes investigated was linear over an exposure period of 15 days. The sampling rates calculated ranged from 70 to 320 ml h(-1) (sampler A) and 630 to 4300 ml h(-1) (sampler B). The passive samplers are able to detect low time-weighted average air concentrations in the pg m(-3) range. The small, robust and inexpensive sampling devices were tested successfully for the long-term air monitoring of semivolatile organic pollutants in a polluted area over an exposure period of up to 28 days.  相似文献   

15.
This research evaluated the UNC passive aerosol sampler as a tool to measure particle mass concentrations and size distributions. The exposure scenario represented high concentrations and exposure periods of a few hours. Mass concentrations measured with the passive sampler were compared to concentrations measured using both a dichotomous sampler and an aerodynamic particle sizer (APS). In addition, the size distributions measured with the passive sampler were compared to those measured using the APS. Mass concentrations measured using the dichotomous sampler and the APS agreed well. The passive sampler tracked, but tended to overestimate, mass concentrations measured by the other two instruments. Size distributions measured with the passive sampler followed the general pattern of those measured using the APS. Overall, the passive sampler demonstrated both its utility and its limitations in these tests. The concentration measurements and size distributions found using passive samplers were more variable than those of the other instruments, but generally followed the data taken using the other methods. The advantages of low cost and ease of use offset the limitations in data quality with the passive sampler; these advantages are particularly welcome for sampling situations where aerosol properties vary over space or time.  相似文献   

16.
为了解可吸入颗粒物污染水平与气象因素之间的关系,从2008年9月—2010年2月采集乌鲁木齐市可吸入颗粒物样品,并对其随时间的变化特征及其与气象因素之间的相关性进行了统计分析。结果表明,采样时间内可吸入颗粒物中PM2.5和PM2.5-10的质量浓度的范围分别为38.2~468.7μg/m3和20.8~243.1μg/m3,平均浓度分别为134.2μg/m3和69.2μg/m3。可吸入颗粒物同时受几种气象因素的影响,其浓度与温度、能见度、风速呈负相关,与湿度呈正相关。  相似文献   

17.
Five different instruments for the determination of the mass concentration of PM10 in air were compared side-by-side for up to 33 days in an undisturbed indoor environment: a tripod mounted BGI Inc. PQ100 gravimetric sampler with a US EPA certified Graseby Andersen PM10 inlet; an Airmetrics Minivol static gravimetric sampler; a Casella cyclone gravimetric personal sampler; an Institute of Occupational Medicine gravimetric PM10 personal sampler; and two TSI Inc. Dustrak real-time optical scattering personal samplers. For 24 h sampling of ambient PM10 concentrations around 10 microg m(-3), the estimated measurement uncertainty for the two gravimetric personal samplers was larger (approximately +/- 20%) compared with estimated measurement uncertainty for the PQ100/Graseby Andersen sampler (< +/- 5%). Measurement uncertainty for the Dustraks was lower (approximately +/- 15% on average) but calibration of the optical response against a reference PM10 method is essential since the Dustraks systematically over-read PM10 determined gravimetrically by a factor approximately 2.2. However, once calibrated, the Dustrak devices demonstrated excellent functionality in terms of ease of portability and real-time data acquisition. Estimated measurement uncertainty for PM10 concentrations determined with the Minivol were +/- 5%. The Minivol data correlated well with PQ100/Graseby Andersen data (r= 0.97, n = 18) but were, on average, 23% greater. The reason for the systematic discrepancy could not be traced. Intercomparison experiments such as these are essential for assessing measurement error and revealing systematic bias. Application of two Dustraks demonstrated the spatial and temporal variability of exposure to PM10 in different walking and transport microenvironments in the city of Edinburgh, UK. For example, very large exposures to PM10 were identified for the lower deck of a double-decker tour bus compared with the open upper deck of the same vehicle. The variability observed emphasises the need to determine truly personal exposure profiles of PM10 for quantifying exposure response relationships for epidemiological studies.  相似文献   

18.
Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.  相似文献   

19.
Factors concerning NO2 uptake by the absorbent triethanolamine (TEA) in NO2 diffusion tubes are examined. Although the nominal freezing point of TEA is 17.9-21.2 degrees C, we show that, for a range of aqueous TEA solutions (0-20%, H2O), no freezing occurs even at -10 degrees C. Therefore NO2 collection efficiency is unlikely to be impaired by low temperature exposure. The recovery of TEA from the meshes of exposed samplers is determined as approximately 98%, even after 42 days, showing that the stability in situ of TEA is unaffected by long-term exposure. A model of a diffusion tube sampling array for simultaneous exposures, with a 0.1 m sampler spacing, shows that NO2 uptake by individual samplers is not affected by the presence of neighbouring tubes in the array. This is confirmed by sampler precision at two Cambridge sites. Four sampler preparation methods are compared for differences in NO2 uptake of exposed samplers. All methods employ TEA as absorbent, transferred by either dipping meshes in a TEA-acetone solution or pipetting aliquots of a TEA-H2O solution onto the meshes. For samplers prepared by three of the methods, no difference in NO2 uptake is found, but for samplers prepared using a 50% v/v TEA-H2O solution, a mean reduction of 18% is found. Student's t-tests show that the difference is highly significant (P < or = 0.001). Reasons for the difference are discussed.  相似文献   

20.
A combined NO2-SO2 Radiello radial-type diffusive sampler was validated under controlled laboratory conditions and compared with NO2-SO2 results of 3 other type of samplers in a field comparison at two locations Ghent-Mariakerke and Borgerhout in Flanders. Laboratory exposures at different temperatures (-5, 10 and 30 degrees C) and relative humidities (0, 50 and 80% RH) in combination with varying concentration levels and exposure times were carried out, with a focus on extreme conditions. Concentration level and exposure time were changed together following suppliers linear working range of samplers and assuring absolute amounts of compounds on the sampler corresponding to those of environmental levels. The average uptake rate for NO2 for 24 hour exposures at 10 degrees C and 50% RH and tested concentration levels (+/-73, 146 and 293 ppb NO2) was 0.076 +/- 0.011 ng ppb(-1) min(-1). Uptake rates during all experiments were lower than the uptake rate given in the instruction manual of the sampler. A significant effect of temperature and relative humidity on NO2 uptake rate was observed. The temperature effect from 10 to 30 degrees C corresponds to the temperature effect given by the supplier of the samplers. High relative humidity (70 to 80%) caused a strong non-reproducible decrease of uptake rate for NO2 at 24 hour experiments but this effect was not observed at longer exposures except for the tests at -5 degrees C. At the tested temperature below zero in combination with high relative humidity the sampler showed anomalous behaviour for NO2. The possible effect of concentration level and exposure time for NO2 needs further research. The average uptake rate for SO2 calculated from all exposures is 0.478 +/- 0.075 ng of sulfate ion each ppb min of SO2 and accords to suppliers uptake rate. No clear effects of temperature, relative humidity or concentration level/exposure time on the uptake rate for SO2 were found, partly due to the large scatter of results. Although NO2 accuracy of Radiello samplers was better during field campaigns than during laboratory validation, IVL and OGAWA samplers gave better results for NO2. In the field, IVL samplers showed best agreement with the continuous analyzers for both NO2 and SO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号