首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
Chondrilla nucula is a common Caribbean demosponge that grows in a range of habitats, from coral reefs to mangrove swamps. On reefs, C. nucula grows as a thinly encrusting sheet, while in mangrove habitats it surrounds submerged mangrove roots as fleshy, lobate clumps. Previous feeding experiments using predatory reef fish revealed a high degree of variability in the chemical defenses of C. nucula. The present study was undertaken to determine whether a relationship exists between habitat, growth form, and chemical defense of C. nucula. Both laboratory and field feeding-assays of crude extracts confirmed that C. nucula possesses a chemical defense with high intercolony variability, but there was no significant variation in feeding deterrency between reef and mangrove habitats at either geographic location (Bahamas and Florida). Extracts of C. nucula collected during September and October 1994 from the Bahamas were significantly more deterrent than those collected during August 1993, May 1994, and May 1995 from Florida, and extracts of these spring and summer Florida collections were more deterrent than extracts of C. nucula collected in December 1994 and February 1995 in the same locations. There was no evidence that deterrent compounds were concentrated in the surface tissues of the sponge, or that chemical defense could be induced by simulated predation. Laboratory and field assays of the fractionated crude extract revealed that feeding deterrency was confined to the most polar metabolites in the extract. Field transplants were used to determine whether predation influenced the growth form of C. nucula. Uncaged sponges transplanted from the mangrove to the reef were readily consumed by spongivorous reef fishes. Lobate mangrove sponges became thinner after being caged on the reef for 3 mo, but encrusting reef sponges did not become thicker after being caged in the mangroves for the same period of time. Reef sponges that were caged for 3 to 15 mo thickened by only a small amount (<1 mm) compared to uncaged and open-caged (i.e. in cages lacking tops) sponges. Simulated bite marks on both reef and mangrove sponges were repaired at a rapid rate (0.8 to 1.6 mm d−1). Fish predation has an important impact on the distribution and abundance of C. nucula, but the thin growth form common to reef environments may be more the result of hydrodynamics than of grazing by spongivorous fishes. Received: 6 October 1997 / Accepted: 19 March 1998  相似文献   

2.
In this study we performed a survey of the bacterial communities associated with the Western Atlantic demosponges Hymeniacidon heliophila and Polymastia janeirensis, based on 16S rRNA sequencing and transmission electron microscopy (TEM). We compared diversity and composition of the sponge-associated bacteria to those of environmental bacteria, represented by free-living bacterioplankton and by bacteria attached to organic particulate matter in superficial sediments. Partial bacterial 16S rRNA sequences from seawater, sediment, and sponges were retrieved by PCR, cloning, and sequencing. Sequences were subjected to rarefaction analyses, phylogenetic tree construction, and LIBSHUFF quantitative statistics to verify coverage and similarity between libraries. Community structure of the free-living bacterioplankton was phylogenetically different from that of the sponge-associated bacterial assemblages. On the other hand, some sediment-attached bacteria were also found in the sponge bacterial community, indicating that sponges may incorporate bacteria together with sediment particles. Rare and few prokaryotic morphotypes were found in TEM analyses of sponge mesohyl matrix of both species. Molecular data indicate that bacterial richness and diversity decreases from bacterioplankton, to particulate organic sediment, and to H. heliophila and P. janeirensis. Sponges from Rio de Janeiro harbor a pool of novel and exclusive sponge-associated bacterial taxa. Sponge-associated bacterial communities are composed of both taxons shared by many sponge groups and by species-specific bacteria.  相似文献   

3.
L. Wulff 《Marine Biology》1995,123(2):313-325
The common Caribbean starfish Oreaster reticulatus (Linnaeus) feeds on sponges by everting its stomach onto a sponge and digesting the tissue, leaving behind the sponge skeleton. In the San Blas Islands, Republic of Panama, 54.2% of the 1549 starfish examined from February 1987 to June 1990 at eight sites were feeding, and 61.4% of these were feeding on sponges, representing 51 species. Sponges were fed on disproportionately heavily in comparison to their abundance, which was only 9.7% of available prey. In feeding choice experiments, 736 pieces of 34 species of common sponges from a variety of shallow-water habitats, and also 9 ind of a coral, were offered to starfish in individual underwater cages. Acceptance or rejection of sponge species was unambiguous for 31 of the 34 species, and there was a clear relationship between sponge acceptability and sponge habitat. Starfish ate 16 of 20 species that normally grow only on the reefs, but only 1 of 14 species that live in the seagrass meadows and rubble flats surrounding the reefs. The starfish live in the seagrass meadows and rubble flats, and avoid the reefs, and so the acceptable reef sponges are generally inaccessible until a storm fragments and transports them into starfish habitat. After Huricane Joan washed fragments of reef sponges into a seagrass meadow in October 1988, starfish consumed the edible species. When the seagrass meadow was experimentally seeded with tagged reef sponge fragments in June 1994, O. reticulatus consumed edible species and accumulated in the area seeded. Reef sponges that were living in a seagrass meadow, from which O. reticulatus had been absent for at least 4 yr (from 1978 to 1982), were eliminated when the starfish migrated into the area, and the sponges have been unable to recolonize up to June 1994. O. reticulatus feeding and habitat preferences appear to restrict distributions of many Caribbean reef sponge species to habitats without O. reticulatus and may have exerted significant selective pressure on defences of those sponges that live in O. reticulatus habitats.  相似文献   

4.
Metabolic relationships between symbiotic cyanobacteria and host sponge have been investigated in the marine species Chondrilla nucula and Petrosia ficiformis (collected in the Ligurian Sea in 1992). DNA, RNA, total protein, cytosolic protein, total sugar, cytosolic sugar, total lipid, nonprotein sulfhydryl groups, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were assayed in cortex-free sponge tissue, where cyanobacteria are all but absent. For both species, biochemical parameters were determined in specimens living in illuminated habitats and in dark caves, where sponges are virtually aposymbiotic for cyanobacteria. As C. nucula is unable to colonize dark sites, specimens of this species were artificially transferred to a cave and maintained in dark conditions for 6 mo. Results showed that in the absence of light (i.e., in the absence of cyanobacteria) C. nucula undergo metabolic collapse and thiol depletion. In contrast, P. ficiformis activates heterotrophic metabolism and mechanisms which balance the loss of cell reducing power. This suggests that cyanobacteria effectively participate in controlling the redox potential of the host cells by the transfer of reducing equivalents. Only P. ficiformis is capable of counteracting, by means of heterotrophic metabolism, the loss of the contribution from symbionts which is caused by dark conditions. This explains the differences in the ecological requirements of the two species. Because cyanobacterial symbionts release fixed carbon in the form of glycerol and other small organic phosphate (Wilkinson 1979), a model based on the glycerol 3-phosphate shuttle (typically occurring in chloroplasts and mitochondria) is suggested. The mechanism proposed appears to be an ancient biochemical adaptation which arose among ancestral symbiotic systems, and further developed in the relationships between endosymbiotic organelles and cytoplasm.  相似文献   

5.
M. S. Hill 《Marine Biology》1996,125(4):649-654
Several species of boring sponges harbor symbiotic zooxanthellae, and it is believed that the symbiont enhances boring activity of host sponges. This hypothesis was tested using manipulative field experiments to assess the effect of intracellular zooxanthella populations on boring rates of the tropical sponge Anthosigmella varians forma varians. Portions of sponge were attached to 60 calcium carbonate blocks of known weight. Three sets of 10 blocks were grown at high light levels and three sets of 10 blocks were grown at low light levels for 105 d in the Florida Keys, Florida, USA. Boring rates, growth rates (lateral growth and within-substratum tissue penetration), and zooxanthella populations were measured at the end of the experiment. Absolute rates of boring and growth of A. varians forma varians were significantly greater when zooxanthella densities were higher. Boring rate and tissue penetration related to final surface area of sponge attachment was also enhanced when zooxanthella densities were higher, suggesting that the symbiont plays a physiological role in the decalcification process. This is in contrast to the role that zooxanthellae play in coral hosts. Based on the results of this study, it appears that the presence of zooxanthellar symbionts has important ecological and life-history consequences for host sponges. Ability to laterally overgrow competitors will be correlated with the size and activity of zooxanthella populations. In addition, the fitness of host sponges will be enhanced by algal symbionts, since greater penetration within substrata will result in an increase in production of tissue that can be converted into storage, feeding and reproductive functions.  相似文献   

6.
Sediment deposition is known to affect the structure of marine rocky-bottom communities, but its specific effects on some key organisms, such as sponges, remain poorly investigated. In a 125-day field experiment involving different treatments of exposure to sediment deposition, we investigated survival of asexually produced recruits of the sublittoral demosponge Scopalina lophyropoda, a model organism suitable to understand similar processes in other sponges. A total of 660 explants obtained from 11 non-clonal sponges (explant donors) were distributed on 30 experimental plates. Each donor sponge contributed two clonal explants per plate, one settled under a roof at a silt-protected position and the other at a silt-exposed position. Plates were installed at the rocky walls of the natural community, also at the pillars of a local harbor where the sponge does not occur naturally. A 3-way ANOVA testing for differences in explant longevity as a function of explant donor, exposure to sediment, and habitat detected that longevity was affected by both an undetermined genetic condition of the explant donor and exposure to silt. Silt-protected explants lived longer than silt-exposed explants. A significant “Silt-exposure × Habitat” interaction detected that silt-exposed explants lived shorter within the harbor than in the natural community, suggesting that harbor silt, which was notably finer, is more deleterious. Inspection of daily mortality rates revealed that the detrimental effects of silt were very evident during the first 20 days in treatments and irrespective of habitat. Then, mortality rates progressively decreased, reaching negligible values in all 4 sponge groups by day 65. At this stage, an undetermined mortality factor other than purely sediment deposition reactivated mortality in all 4 sponge groups, but it affected more intensely the sponges in the harbor, irrespective of being protected from or exposed to sediment deposition. All together, the results of our field experiment suggest that sediment loads are a major mortality factor among small sponge individuals in sublittoral rocky communities. Because a significant “donor factor” suggests an unidentified “genetic component” to be involved in the ability to cope with sediment, natural or man-driven processes increasing coastal sediment deposition are susceptible to induce changes not only in the abundance but also the genetic structure of the sponge populations in the long term.  相似文献   

7.
The relationship between sponge size, habitat and shape was studied in the encrusting sponge Crambe crambe (Schmidt, 1862), which is distributed widely throughout the shallow Mediterranean littoral. Examination of sponge patches in shaded and well-illuminated habitats showed that the degree of peripheral irregularity of the edges of a patch is directly related to patch size. This relationship is valid only for sponges of >100 mm2 in area. Photophilic and sciaphilous sponges display different growth forms. The pattern of growth is interpreted in terms of competition for space. The directional growth of sciaphilous sponges may be due to the presence of dominant neighbours that are good space competitors, and the irregular growth of photophilic sponges to the absence of such neighbours.  相似文献   

8.
Microbial diversity and spatial distribution of the diversity within tissue of the marine sponge Tethya californiana was analyzed based on 16S rRNA gene sequences. One candidate division and nine bacterial phyla were detected, including members of all five subdivisions of Proteobacteria. Moreover, chloroplast-derived Stramenopiles- and Rhodophyta-affiliated 16S rRNA gene sequences were found and Stramenopiles represented the most abundant clones (30%) in the clone library. On the phylum-level, the microbial fingerprint of T. californiana showed a similar pattern as its Mediterranean relative T. aurantium. An interesting difference was that Cyanobacteria that were abundantly present in T. aurantium were not found in T. californiana, but that the latter sponges harbored phototrophic Stramenopiles instead. Surprisingly, the phototrophic microorganisms were evenly distributed over the inner and outer parts of the sponge tissue, which implies that they also reside in regions without direct light exposure. The other phyla were also present in both the outer cortex and the mesohyl of the sponges. These results were confirmed by analysis on the operational taxonomic unit level. This leads to the conclusion that from a qualitative point of view, spatial distribution of microorganisms in T. californiana tissue is quite homogeneous. Thirty-two percent of the operational taxonomic units shared less than 95% similarity with any other known sequence. This indicates that marine sponges are a rich source of previously undetected microbial life.  相似文献   

9.
In the Strait of Georgia and Howe Sound, British Columbia, colonies of individual cloud sponges, growing on rock (known as sponge gardens) receive resource subsidies from the high biodiversity of epifauna on adjacent rock habitats. Bioherms are reefs of glass sponges living on layers of dead sponges. In the same area as the sponge gardens, newly discovered bioherms in Howe Sound, BC (49.34.67 N, 123.16.26 W) at depths of 28- to 35-m are constructed exclusively by Aphrocallistes vastus, the cloud sponge. The sponge gardens had much higher taxon richness than the bioherms. The sponge garden had 106 species from 10 phyla, whereas the bioherm had only 15 species from 5 phyla. For recruiting juvenile rockfish (quillback, Sebastes maliger), the food subsidy of sponge gardens appears to be missing on bioherms of cloud sponge, where biodiversity is relatively low. While adult and subadult rockfishes (S. maliger, S. ruberrimus, S. proriger, and S. elongatus) were present on bioherms, no evidence for nursery recruitment of inshore rockfishes to bioherms was observed, whereas the sponge gardens supported high densities of newly recruited S. maliger, perhaps owing to the combination of both refuge and feeding opportunities. These results indicate that sponge gardens form a habitat for early stages of inshore S. maliger, whereas A. vastus bioherms are associated only with older juvenile and adult rockfishes.  相似文献   

10.
The sponge Tetilla sp. (Tetractinomorpha: Tetillidae) is a common species in the eastern Mediterranean. This sponge inhabits four different habitat types differing in wave impact and irradiance levels. Two of these habitats (a shallow cave and deep water) are characterized by relatively calm water, whereas the other two (shallow exposed site and tide pools) are in turbulent water with high energy flow. The present study examined the influence of physical (depth, illumination and water motion) and biotic factors on morphology, skeletal plasticity and reproductive traits among the four spatially separated populations. Sponges from tidal pools had significantly larger body volume than sponges from deep water and from shallow caves (ANOVA: tidal-deep P<0.0001; tidal-shallow caves P<0.05). Sponges from exposed habitats were significantly larger than deep-water sponges (ANOVA: P=0.01). In addition, individuals from tide pools and from the exposed habitat had a significantly higher proportion of structural silica than sponges from the calmer deep water and from the cave sites. Oxea spicules in sponges from the calm habitats were significantly shorter than in those from the tidal pools and the exposed habitats. The percentage of spicules out of a sponges dry weight in individuals transplanted from deep (calm) to shallow (turbulent) water significantly increased by 21.9±12.9%. The new spicule percentage did not differ significantly from that of sponges originally from shallow water. Oocyte diameter differed significantly between habitats. The maximal size of mature eggs was found in deep-water sponges in June (97±5 m). In the shallow habitats, a smaller maximal oocyte diameter was found in the cave, in May (56.5±3 m). Furthermore, oocyte density in shallow-water sponges was highest in May and decreased in June (with 88.2±9 and 19.3±9 oocytes mm–2, respectively). At the same time (June), oocyte density of deep-water sponges had just reached its maximum (155±33.7 oocytes mm–2). The difference in oocyte size and density between deep- and shallow-water individuals indicates an earlier gamete release in the shallow sponge population. The results suggest that plasticity in skeletal design of this sponge indicates a trade off between spicule production and investment in reproduction.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

11.
Illumination, current strength and physical turbulence influence the distribution of 4 tropical sponges. Three sponges with cyanobacteria in exposed tissues grow only in poen shallow habitats: Pericharax heteroraphis in moderate-current, lowturbulence regions on the reef slope; Jaspis stellifera in low-current, moderate-turbulence regions of the outer reef flat; and Neofibularia irata in moderate-current, high-turbulence areas below the reef crest. Ircinia wistarii contains no cyanobacteria and occurs in deeper, strong-current, high-turbulence regions. N. irata agressively overgrows neighbouring corals and its growth form is influenced by the current strength. The sponges efficiently filter bacteria from the water. The efficiency is related to the aquiferous structure, particularly the size of choanocyte chambers, and is unrelated to the existing bacterial populations in sponge tissue. The numbers of bacteria associated with the sponges are proportional to the sponge mesohyl density, with the dense sponges J. stellifera and I. wistarii containing many bacteria whereas P. heteroraphis is not dense and has few bacteria.  相似文献   

12.
Many sponge species contain large and diverse communities of microorganisms. Some of these microbes are suggested to be in a mutualistic interaction with their host sponges, but there is little evidence to support these hypotheses. Stable nitrogen isotope ratios of sponges in the Key Largo, Florida (USA) area grouped sponges into species with relatively low δ15N ratios and species with relatively high δ15N ratios. Using samples collected in June 2002 from Three Sisters Reef and Conch Reef in the Key Largo, Florida area, transmission electron microscopy (TEM) and denaturing gradient gel electrophoresis were performed on tissues of the sponges Ircinia felix and Aplysina cauliformis, which are in the low δ15N group, and on tissue of the sponge Niphates erecta, which is in the high δ15N group. Results showed that I. felix and A. cauliformis have large and diverse microbial communities, while N. erecta has a low biomass of one bacterial strain. As the low δ15N ratios indicated a microbial input of nitrogen, these results suggested that I. felix and A. cauliformis were receiving nitrogen from their associated microbial community, while N. erecta was obtaining nitrogen solely from external sources. Sequence analysis of the microbial communities showed a diversity of metabolic capabilities among the microbes of the low δ15N group, which are lacking in the high δ15N group, further supporting metabolic differences between the two groups. This research provides support for hypotheses of mutualisms between sponges and their associated microbial communities.  相似文献   

13.
Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.  相似文献   

14.
During 2008 and 2009, an epidemic affected sponges of the genus Ircinia in the Western Mediterranean. Investigations at a site on the European coast (6o43′08.80′′N; 3o43′52.20′′W) and another on the African coast (35o10′51.00′′N; 2o25′33.00′′W) revealed healthier African populations. The disease started with small pustules on the sponge surface, which subsequently coalesced forming larger, extensive lesions. An ultrastructural study suggested that a twisted rod is the etiological agent. It infected the sponges from the outside, initially killing the cells below the ectosome and then penetrating deeper into the body. The sponges responded to the bacterial progression by secreting concentric barriers of collagen and concentrating phagocytic cells at the diseased zones. This primitive immune system successfully resisted the disease in many instances, although mortality reached 27% in the studied populations. Epidemic outbreaks recur each year in September through November, arguably favored by abnormally high seawater temperatures in August.  相似文献   

15.
Three taxonomically distant sponges Pericharax heteroraphis, Jaspis stellifera and Neofibularia irata contain phenotypically similar bacterial symbionts which differ from bacteria in the ambient water. These symbionts are predominant in the sponges and were detected after computer analysis of 526 heterotrophic bacterial strains tested for 76 characters. These facultative anaerobic symbionts metabolize a wide range of compounds and may be important in removing waste products while the sponges are not circulating water. The bacteria produce sticky-mucoid colonies and thus would contribute to sponge structural rigidity. The fourth sponge Ircinia wistarii contains a mixed aerobic population similar to that in the ambient water. The majority of the bacteria are located around the inhalant canals, facilitating the uptake of dissolved organic matter and oxygen from the incoming water.  相似文献   

16.
Several mechanisms are known to assist the survival of sponges in highly sedimented environments. This study considers the potential of sponge morphology and the positioning of exhalant water jets (through the osculum) in the adaptation of Haliclona urceolus to highly sedimented habitats. This sponge is cylindrical with an apical osculum, which is common in sedimented subtidal habitats at Lough Hyne Marine Nature Reserve, Cork, Ireland. Fifteen sponges were collected, preserved (killed with the structure and morphology maintained) and then replaced in a high sediment environment next to a living specimen (at 24 m). After 5 days, the sediment settled on both living and preserved sponges was collected and dried. No sediment was collected from living sponges, while preserved specimens had considerable amounts of settled sediment on their surfaces. The amount of sediment collected on these preserved specimens was significantly linearly correlated with sponge dry weight, maximum diameter and oscula width (R2>0.70, P<0.001, df=14). Observations of flow direction (using coloured dye) through H. urceolus showed that water is drawn into the sponge on its underside and exits via a large vertically pointing osculum. Sponge morphologies (shape) have often been considered as a means of passive adaptation to a number of different environmental parameters with oscula position enabling entrained flow through the sponge in high flow conditions. However, this study shows how the combination of sponge morphology (tubular shape) and positioning of the osculum may enable H. urceolus to survive in highly sedimented environments. Similar mechanisms may also aid the survival of some deep-water sponge species with similar morphologies.Communicated by J.P. Thorpe, Port Erin  相似文献   

17.
Homoscleromorph sponges such as Oscarella spp. are characterized by unique morphological features, and Homoscleromorpha were therefore recently proposed as the fourth class of sponges. The microbiology of these sponges was mainly studied by electron microscopy while molecular studies are scarce. The aim of this study was to characterize the bacteria in Oscarella sponges using molecular tools. Denaturing gradient gel electrophoresis revealed distinct bacterial profiles in five Oscarella species and several color morphs of Oscarella lobularis. These profiles are characteristic of low microbial abundance (LMA) sponges. This was further confirmed by analysis of a 16S rRNA clone library from O. lobularis that yielded a low phylum-level diversity with dominance of Alphaproteobacteria. Bacterial communities in O. lobularis were very similar among different individuals (collected at the same site and time), five different color morphs, and specimens from different depths and locations, indicating a species-specific association. These results allow novel insights into the microbiology of the first known LMA sponge genus within the new class Homoscleromorpha.  相似文献   

18.
Symbiotic cyanobacteria are associated with marine sponges in three ways: the majority are free-living in the mesohyl; large aggregates occur in cyanocytes (specialized, vacuolated archeocytes); and few are present in digestive vacuoles. The cyanobacteria in Jaspis stellifera and Neofibularia irata are morphologically similar to those described in Mediterranean sponges, whereas those in Pericharax heteroraphis are different. The freeliving bacterial populations are morphologically similar, although the number of bacteria varies between the species. The fourth sponge Ircinia wistarii contains a mixed bacterial population unlike those in the other sponges. Sponge digestion of microbial associates is rare and not considered to contribute significant nutrients.  相似文献   

19.
Six species of common Caribbean Zoanthidea, Parazoanthus swiftii, P. parasiticus, P. catenularis, P. puertoricense, Epizoanthus cutressi, and Epizoanthus sp., are virtually restricted to living on surfaces of reef-dwelling sponges. Quantitative surveys on Barbados reefs indicate that substrate specificity is relatively high among these zoanthids with three restricted to a single primary host sponge species and three restricted to three closely related sponges. One species, P. swiftii, exhibits a broad range of acceptable secondary substrates, due to its unique ability to execute migrational spread in the adult polyp stage. Variations in substrate specificity have been noted between island populations within the extensive Caribbean range and appear to be due to different species compositions of local sponge communities and slight differences in zoanthid larval settling specificities.  相似文献   

20.
Trophic specializations are widespread among opisthobranch molluscs. One purported example from the Mediterranean Sea is the dotted sea slug Peltodoris atromaculata. It has been hypothesized that this species is strongly monophagous on the sponge Petrosia ficiformis. However, the small amount of evidence that has been found for this hypothesis is based just on laboratory tests. Here we study the feeding habits and the diet of Peltodoris atromaculata in its natural habitat. We observed and videotaped 161 individuals together with the organisms on which they were found (their living substrata). Feeding scars were identified and videotaped as well. Individuals and their living substrata were sampled for further analysis in the laboratory. The composition of faeces of Peltodoris, especially undigested sponge spicules, was analyzed by light and scanning electron microscopy and compared to the composition of the living substrata. Most of the faecal samples consisted of undigested sponge spicules. Although Peltodoris was found on 11 species of sponges, only 2 of them, Petrosia spp. and Haliclona fulva, form its diet (76% out of n=121 samples). In accordance with this, feeding scars in the habitats were exclusively observed on these two sponges. Estimation of electivity indices suggests that Haliclona is preferred over Petrosia. One remarkable feature of the exclusive feeding of Peltodoris on Petrosia and Haliclona is that both sponges share specific fulvinol-like polyacetylenes that show cytotoxic activity in bioassays. Potential benefits and evolutionary aspects of this trophic specialization are discussed. Besides sponge-containing faeces, we found spicule-free faeces (24%, n= 29). These were very small in volume compared to sponge-containing faeces, and only few distinct structures were present. However, the use of food other than sponges is not necessarily indicated by this, because the spicule-free faeces might also represent left-overs from the stomach and digestive gland after sponge spicules have been released.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号