首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
中国东南沿海风能资源评价   总被引:4,自引:1,他引:4  
本文选取322个气象台站(自记158个,非自记174个)10年(1971—1980)风速资料统计计算了3.5—20.4m/s有效风速出现的小时数,年(月)风能和风能密度,风速、风能变化规律;绘制了年有效风能和有效风速频率分布图,进而按风能资源分布规律做出风能区划及风能的高度变化。其次,结合实际风能资料,阐明风能与风力机输出能量转换关系,从而测算出该地区农田灌溉和风力发电的风能资源利用转换值。最后,根据当地实际风能资源、环境、地形及地下水位高低,为选择合理的设计风速或引进适合当地的风力机以及解决当地部分能源提供合理化建议和对该区发展风力机的前景提出了看法。实践证明具有一定的实际应用价值。  相似文献   

2.
湖北省风能资源的高分辨率数值模拟试验   总被引:3,自引:0,他引:3  
利用边界层模式CALMET耦合中尺度模式MM5对湖北省的风能资源分布特征进行数值模拟,得到水平分辨率1 km、 垂直高度10~150 m覆盖全省的风能资源分布。通过与测风塔对比发现,模式对九宫山7月、 11月的逐时有效风速的模拟相关系数分别为0.59、 0.57;受下垫面复杂地形的影响,10 m高度上的误差最大,50 m高度的模拟效果好于其他高度。70 m高度上数值模拟风速年均误差为7.21%,逐月平均风速误差范围在6.62%~7.30%之间。全省风能资源的总体分布特征是:中东部大于西部,西部的等值线相对凌乱且密集,冬、 春季风速、 风功率大于秋季,西部地区为风资源较贫乏地区。数值模拟结果虽然存在一定的误差,但模拟得到的风能资源分布趋势是符合本地区气候和地形特征变化规律的,可以作为制定区域风电发展规划的科学依据。在进行风电场选址时,对于误差大于平均水平的地区需要多布设测风塔。  相似文献   

3.
广东省风能资源区划研究   总被引:22,自引:8,他引:14  
论文以Surfer8.0以及地理信息系统(GIS)软件Citystar3.0为平台,利用广东省86个气象站历史测风资料以及沿海72个风能测风塔临时观测资料,计算广东省空间分辨率为1km×1km格点上风能参数,进行了广东省风能资源的宏观区划和风电场选址区划;估算出广东省离地面10m高度上全省及各区划的风能资源理论可开发量为7.50×104MW,技术可开发量为5.89×103MW。为广东省风电开发宏观规划以及大型风电场的微观选址提供了科学而且精细的资源依据。  相似文献   

4.
风能资源评估系统开发与应用   总被引:4,自引:0,他引:4  
开发风能资源、利用风力发电在我国虽然只有数十年,但其发展却很快,风能作为可再生的清洁能源也越来越受到重视。风能资源评估作为风电资源开发的前提,是风力机选址的关键。介绍了以Visual Basic为开发工具,利用SQL Server为数据库开发而成的风能资源评估系统的结构和特点。经实践证明,本系统缩短了风能资源评价周期,提高了数据处理可靠性。  相似文献   

5.
江西省山地风场风能资源储量及特征分析   总被引:1,自引:0,他引:1  
论文利用数值模拟GIS空间分析法以及实测与野外勘察调研两种方法规划了江西省山地风能资源的具体分布并定量估算了其储量,此外,还利用山地2座测风塔资料,详细地分析了山地风能资源特性,结果表明:江西省高山地区风能资源呈沿山脉走向的线状分布或孤立山峰的点状分布,技术可开发量约为111×104 kW,技术可开发面积约为136 km2,装机容量约为148×104 kW。山地低层风速和风功率密度较大,随高度的增加略有增大,风切变指数很小,分别为0.017、0.098。山地风场风速和风功率密度日变化明显呈U型分布,正午前后风速最小,凌晨至清晨风速较大,最大风速与最小风速相差1~2 m/s;山地风场有两个接近相反的主导风向,集中在NW-N以及SSW-SSE扇区,对于风机机组布局较为有利。  相似文献   

6.
MM5/CALMET模式系统在风能资源评估中的应用   总被引:7,自引:1,他引:6  
周荣卫  何晓凤  朱蓉 《自然资源学报》2010,25(12):2101-2113
论文建立了一个适用于区域性风能资源评估的数值模式系统,该系统由中尺度气象模式MM5和微尺度模块Calm et以及风能资源参数计算模块组成。运用该模式系统分别对代表我国沿海风能丰富区的江苏省沿海地区和复杂地形条件下的北部风能丰富区的甘肃省酒泉地区的风能资源进行1 km×1 km高分辨率的逐时模拟,并通过与模拟范围内测风塔观测资料的对比检验该模式系统对我国不同地形条件下的风能资源评估能力。对比结果表明该模式系统可以很好地模拟出这两个地区的风能资源分布情形,不仅各测风塔处的年平均风速模拟值与实测值较为接近,风向频率和风功率密度方向频率也与观测值较为吻合。总体来看,该模式系统对甘肃省酒泉地区的模拟值与实测值的对比结果要优于江苏省沿海地区的对比结果。因此,该模式系统可以用来对我国不同地形条件下的风能资源进行高分辨率的评估。同时通过分析这两个地区70 m高度处的年平均风速、年平均风功率密度、年有效小时数、年发电量的水平分布结果发现,江苏省沿海地区海面上风能资源比陆上沿岸区域丰富,且风能资源沿海岸线往南逐步增加;甘肃省酒泉地区中部的盆地区域由于受南北高山形成狭管效应的作用,风能资源非常丰富。  相似文献   

7.
全球海域风能资源评估及等级区划   总被引:5,自引:0,他引:5  
利用1988年1月至2009年12月具有高精度、长时间序列的CCMP(Cross-Calibrated, Multi-Platform)风场,对全球海域的风能资源进行评估。综合考虑风能密度大小、能级频率、大风频率、有效风速、风能密度的稳定性等各方面,对风能资源进行系统性研究,并对全球海域的风能资源进行区划,为海上风力发电等风能资源的开发利用提供科学依据。研究发现全球海域蕴藏着丰富的风能资源,大部分海域为风能资源的富集区,尤其富集在南北半球西风带,风能资源的贫乏区主要分布于赤道附近和两极零星海域,可利用区和较丰富区主要分布于低纬度海域、太平洋东部中低纬近岸海域、两极大部分海域。  相似文献   

8.
黑龙江省大气边界层不同高度风速变化   总被引:12,自引:10,他引:2  
利用黑龙江省1961—2010 年哈尔滨、嫩江、齐齐哈尔、伊春4 个气象站探空和地面风速资料,分析了边界层内不同高度风速的气候学特征和时间变化趋势,获得以下结论:①黑龙江省边界层内不同高度年平均风速随高度增加而增大,10 m到300 m风速垂直递增率最大;风速在年内具有明显的季节性特征,各高度都是春季最大,近地面层冬季风速最小,其余高度夏季风速最小。②1961—2010 年,近地面10 m高度平均风速1970 年代最大,其后各年代风速逐渐减小,2000 年代风速最小;300、600、900 m高度,平均风速1980 年代最大,从1980 年代到2000 年代逐渐减小,300 m高度平均风速最小出现在1960 年代,600 m和900m最小出现在1970 年代。③1961—2010 年,近地面10 m高度平均风速呈明显减弱趋势,递减率为0.162 m/(s·10 a),递减趋势主要发生在1970 年代以后,但300、600 和900 m高度平均风速变化均不显著。④黑龙江省近地面风速变化趋势可能主要与观测环境改变和城市化等非自然因素影响有关,上层的风速变化则主要受大尺度大气环流变化的影响。  相似文献   

9.
正海上风电是未来清洁能源新方向由于陆地上经济可开发的风资源越来越少,全球风电场建设已出现从陆地向近海发展的趋势.与陆地风电相比,海上风电风能资源的能量效益比陆地风电场高20%~40%,还具有不占地、风速高、沙尘少、电量大、运行稳定以及粉尘零排放等优势,同时能够减少机组的磨损,延长风力发电机组的使用寿命,适合大规模开  相似文献   

10.
基于GIS的河南省风能资源时空分布及利用   总被引:2,自引:0,他引:2  
近年来,无污染、可再生的绿色能源--风能,其潜在的价值逐渐被开发与利用。为了更加合理地利用河南省风能资源及研究气候变化条件下河南省风能的变化趋势,论文利用1971-2000年期间的河南省气象台站风速资料,采用统计方法和流体力学风能计算方法,结合ArcGIS系统对河南省的风能及分布进行了研究。研究结果表明:①特殊的地形特征造就了河南省风速较大区域主要集中在豫北、豫中、豫东的平原地带及豫南,西部及北部太行山区平均风速相对较小,区域风速差值较大;②30 a间河南大部分区域的风速变化为逐渐减小趋势,只有个别站点风速表现为趋势略增或趋势稳定;豫东为风速减小最大的区域,豫西、豫中及豫南地区风速变化趋势相对较小;③风能研究发现最大值区域与平均风速地理分布基本一致,最大风能区域在豫北、豫东、豫中及豫南一带,最小风能区域主要集中在西部山区。  相似文献   

11.
不同气象条件下的气溶胶时空分布特征   总被引:4,自引:0,他引:4  
利用2012年3月20—24日的激光雷达回波数据和粒子计数器采样的气溶胶数浓度数据,分析了测点近地面及其上空的气溶胶垂直消光系数、数浓度等时空分布特征,研究了风向、风速、RH(相对湿度)对近地面气溶胶分布的影响. 结果表明:①阴霾天气气溶胶垂直消光系数在0.01~1.0之间,边界层高度在1km以下,到达边界层顶时消光系数产生突变;晴天气溶胶垂直消光系数在0.01~0.2之间,边界层高度在1.5~2.5km. ②阴霾天和晴天中近地面气溶胶数浓度变化规律一致,上午08:00左右开始增加,随温度升高呈下降态势,在傍晚达最小值后又略微增长并产生次高峰,夜间继续呈下降趋势. ③风向为东北偏东风时大气气溶胶的数浓度较大;风速增大,有利于气溶胶垂直输送和扩散,导致气溶胶数浓度减小. ④气-粒转化过程中,RH增大有利于气溶胶粒子由爱根核向积聚模态凝结. ⑤RH较小时,其与气溶胶数浓度呈正相关,而当RH增至74%时二者呈负相关.   相似文献   

12.
基于地基遥感资料的厦门市污染边界层特征分析   总被引:2,自引:0,他引:2  
城市大气边界层是影响城市环境气象的重要研究对象,本研究利用新型地基遥感数据针对城市颗粒物污染过程开展边界层特征分析,旨在利用风廓线雷达和微波辐射计等高时空分辨率的遥感数据探讨边界层内大气运动、温湿条件的变化与近地面污染累积的关系.结果表明:厦门地区颗粒物污染过程中,边界层内弱风层厚度较地面风速而言更能够代表边界层内扩散条件的变化,可以更好地表征和预测近地面污染的变化;在局地累积的污染过程中,边界层内存在较厚的弱风层,同时2 km以下的风场有明显的风向转变特征,导致边界层内不存在有效的传输和扩散,另外,污染时边界层垂直温差可以在一定程度上反映干季的垂直扩散条件,0~3 km温差与PM_(2.5)浓度有着密切的联系;冷空气过程有将上游污染物向本地区输送的可能,城市边界层在东北大风的条件下伴随着显著的垂直下沉运动,有利于上空污染向下扩散.多源地基遥感数据联合分析能够进一步解释城市边界层内气象条件对于城市大气污染变化的影响,集合各设备的探测优势开展城市宜居和污染气象条件研究具有较高的科学性和可行性.  相似文献   

13.
基于2015~2020年京津冀地区生态环境监测数据和多源气象数据,分析了北京地区0~3km中低空垂直风切变在不同PM2.5等级下的演变特征。结果表明,风速日变化特征随着PM2.5浓度升高而逐渐减弱,PM2.56级污染时近地面风速日变化基本消失,甚至反向变化;白天边界层风速增大时段对应10m/(s·km)以下的风切变,20:00后增大至12~14m/(s·km),该现象随着PM2.5污染加重变得更为显著,白天时段近地层垂直风切变较小值(<6m/(s·km))维持,可能是污染严重的信号之一;基于旋转经验正交函数分解法(REOF),将污染日下中低空垂直风切变分为无扰动型和压缩型,压缩型低压强度略强于无扰动型,无扰动型的PM2.5浓度均值、峰值较压缩型更高,逆温强于压缩型,另外,无扰动型PM2.5浓度增长期和边界层高度(PBLH)反向变化,压缩型PM2.5浓度增长期和PBLH同向变化。  相似文献   

14.
基于2015~2019年北京生态环境监测和气象数据, 分析了延庆地区山谷风对PM2.5浓度的影响, 揭示了含山谷风环流污染过程(事件1)与未有山谷风污染过程(事件2)初始阶段的异同及其气象影响机制.结果表明, 延庆持续性污染过程集中在9月~次年3月, 共计63次, 其中27次(43%)伴随1d或多天的山谷风日, 39d山谷风中有32d(82%)出现在污染过程的初始阶段, 18%出现在峰值阶段; 36次过程未出现山谷风日.山谷风日逐时PM2.5浓度大于非山谷风日4.5~15.4μg/m3, 全日差值最大时段为谷风阶段(15:00~19:00)均大于13μg/m3, 山谷风日存在SSE-ESE风频中心0.59%, 15:00~16:00风速3.3m/s左右, 非山谷风日风频中心在WSW-SW和SE-ESE, 最大值为0.41%, 风速较山谷风日小.事件1和2初始阶段PM2.5浓度变化关键期为15:00~19:00, 事件1风向E-SSE风速2~4m/s, PM2.5增长速率大于事件2, 与露点变化趋势基本一致, 23:00事件1PM2.5浓度显著高于事件2 20μg/m3左右, 污染过程发展初期出现的山谷风环流谷风阶段的偏东南风形成气溶胶和绝对水汽的区域传输, 对PM2.5浓度的升高有正贡献.平原空气污染过程(延庆未出现)特殊污染型占比20%, 该类污染型白天风频中心分布分散, NNW-WNW、SW-SSW和ENE-NNE均有0.7%左右的风频中心, 未出现S-ESE的风频.  相似文献   

15.
对我国东南沿海主要的气象环境条件因素,包括温度、湿度、风资源、台风、雷暴等,以及它们对风电机组的影响与欧洲沿海进行了对比分析。结果表明,我国东南沿海地区与欧洲沿海气象环境条件有着显著差异,对风电机组有着不同的影响,发展海上风电不能完全借鉴欧洲海上风电场经验。研究结果为我国东南沿海海上风电机组的设计、制造、运行和维护提供了参考。  相似文献   

16.
在风域视角下,分析大尺度生态廊道形成的关键因子,构建最小累计阻力模型和通风效益评测模型,以京津冀为研究区,利用气象、遥感及其他基础地理数据等,阐述研究区近地面风场特征,识别区域内生态廊道空间格局,结果表明:研究区全域近地面多年平均风速为2.07m/s.冬季,研究区多年平均风速呈张家口坝上—北京—天津沿海高两侧低格局,主导风向为偏北风;夏季,多年平均风速呈现西北部和东南部高,中东部和西南部低的格局,主导风向为偏南风.冬季,在研究区筛选出34个社会经济源地,识别出5条一级生态廊道,走向从西北向东南或从北向南,7条二级生态廊道,走向主要从西向东;夏季,在研究区筛选出68个生态源地,识别出5条一级生态廊道,走向从东南向西北或从南向北,6条二级生态廊道,走向主要从东向西.合并精简冬夏连通性能较好的生态廊道,优选出5条一级生态廊道,总长度3073.04km,以南北向为主,5条二级生态廊道,总长度1582.06km,以东西向为主,初步形成京津冀“五纵五横”生态廊道格局.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号