首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
陆地生态系统土壤呼吸对气候变暖的响应研究方面目前还没有一致的结论,其原因可能为土壤呼吸不同组分对土壤温度变化的敏感性及相应的非生物和生物机制存在显著差异。文章分别从非生物因素和生物因素系统地论述了增温对青藏高原东部窄叶鲜卑花(Sibiraea angustata)高寒灌丛土壤呼吸不同组分的影响机制,发现增温可通过提高土壤微生物群落和植物根系的生理活性直接促进土壤异养呼吸和根系呼吸。同时增温能通过改变非生物因子影响土壤呼吸各组分速率,如增温显著提高土壤养分含量和土壤酶活性,进而间接促进土壤呼吸;而增温引起土壤水分含量较小程度的降低不足以抑制土壤呼吸过程。增温还能通过改变植物群落生产和土壤微生物群落结构等生物因子影响土壤呼吸各组分速率,如增温导致植物细根生产量、死亡量和分解速率提高,非根际土壤微生物生物量与活性增加;增温还导致土壤微生物功能群向革兰氏阳性菌和放线菌群落转变,从而导致土壤微生物对土壤惰性有机碳的利用增加。受根际土壤可利用碳含量较高的影响,根际微生物呼吸对增温的响应不敏感,增温对根际微生物生物量的影响也不显著。由此可见,在青藏高原东部高寒灌丛生态系统中,气候变暖将通过改变非生物与生物因子影响土壤呼吸等碳释放过程。以上结果有利于更加全面地认识全球气候变暖背景下高寒灌丛土壤碳循环过程。  相似文献   

2.
青藏高原高寒生态系统碳循环对气候变暖和放牧等的响应依然存在很大不确定性.采用开顶式温室模拟增温,采用刈割和牲畜粪便归还相结合的方法模拟中度放牧,研究气候变暖和中等强度放牧对青藏高原东部高寒草甸生态系统碳交换、生态系统光合、生态系统呼吸与土壤呼吸的影响.结果显示:模拟气候变暖和中度放牧显著改变青藏高原东部高寒草甸生态系统净碳交换及其组分,并且生态系统碳循环的响应随时间呈现不同的变化.增温显著提高净生态系统碳交换和生态系统光合,增加生态系统净碳固定;中度放牧降低生态系统呼吸和土壤呼吸,而对生态系统净碳交换、生态系统光合的影响存在明显季节动态变化,即在处理初期(8月上旬)明显降低,而后逐渐上升,在生长季后期、末期(9月中下旬-10月份)显著高于对照;增温和中度放牧未表现明显的交互作用,增温+放牧处理增加了季节性平均净生态系统碳交换和生态系统光合,但没有显著影响季节平均生态系统呼吸.增温和中度放牧的交互作用对碳交换的影响存在时间尺度上的变化.本研究表明,在未来气候变暖和中等强度放牧的背景下,青藏高原东部高寒草甸碳汇功能有可能增强.  相似文献   

3.
土壤呼吸在生态系统碳循环过程中占有重要地位,为探讨纳帕海流域生态系统土壤呼吸过程,于2014年8月中下旬期间,采用LI-8100开路式土壤碳通量测量系统对流域内7种植被类型土壤呼吸速率及其与土壤温度的响应规律进行了研究。结果表明:(1)各植被类型的土壤呼吸速率日变化都呈单峰曲线形式,最高值和最低值分别出现在13:00─16:00和2:00─8:00;(2)各植被类型土壤呼吸速率日均值为自然草地(5.506μmol·m~(-2)·s~(-1))轻度退化草地(4.322μmol·m~(-2)·s~(-1))高山灌丛(3.849μmol·m~(-2)·s~(-1))中度退化草地(3.226μmol·m~(-2)·s~(-1))重度退化草地(2.959μmol·m~(-2)·s~(-1))高山松Pinus densata林(2.260μmol·m~(-2)·s~(-1))青稞Hordeum vulgare Linn.var.nudum Hook.f.地(2.256μmol·m~(-2)·s~(-1));(3)当草地开垦为农田后,其土壤呼吸速率降为最低水平;(4)所有植被类型的土壤呼吸速率与5 cm土壤温度呈指数相关,其中在自然草地上,土壤温度对其土壤呼吸的影响最大,但温度敏感性却较低,重度退化草地的土壤温度对其土壤呼吸的影响最小,但温度敏感性最大。研究可见,区域内人类活动使草地退化、转变为农田等过程,导致其土壤呼吸速率显著下降。重度退化草地对温度变化所表现出的相对较高的敏感性,预示着在环境变化的影响下,生态系统过程及功能将会产生更大的波动。  相似文献   

4.
近年来随着降雨格局的变化,区域性干旱加剧,而干旱对土壤碳循环的影响情况仍不十分明确。为探究降雨减少对土壤呼吸的影响,2016年以华北落叶松(Larix principis-rupprechtii)人工林为研究对象,设置对照(CK)、减少降雨30%(W1)和减少降雨60%(W2)3个处理水平,通过人工隔离降雨模拟干旱条件对土壤呼吸速率的影响。在6—10月份生长季,采用LI-8100土壤碳通量测量系统测定每月月中、月末土壤呼吸速率,并同时测定5 cm深度土壤温湿度。结果表明:减少降雨60%使土壤湿度显著降低17.8%(P0.05),而对土壤温度的影响不显著;减少降雨30%对土壤温湿度的影响均不显著;对照、减少降雨30%和减少降雨60%的平均土壤呼吸速率分别为2.45、2.29和2.16μmol·m~(-2)·s~(-1),与对照相比,减少降雨抑制了土壤呼吸,减少降雨60%使平均土壤呼吸速率降低了11.84%(P0.05),土壤呼吸通量减少了41.01 g·m~(-2),而减少降雨30%对土壤呼吸的影响不显著;土壤呼吸速率与土壤温度呈显著指数相关(P0.05),土壤温度解释了66.2%的对照处理的土壤呼吸变异,适当减少降雨能够提高土壤呼吸速率与土壤温度的相关性;在2~7℃土壤温度下,土壤呼吸速率与土壤湿度呈显著二元线性相关(P0.05),且在2~7℃土壤温度下减少降雨提高了土壤呼吸速率和土壤湿度的相关性;在13~17℃土壤温度下,减少降雨则降低了土壤呼吸速率和土壤湿度的相关性;减少降雨提高了土壤呼吸的温度敏感性,且随着降雨减少程度的增大而增大。可见,降雨是影响华北落叶松人工林土壤呼吸的重要因子。  相似文献   

5.
短花针茅荒漠草原生态系统净碳交换对载畜率的响应   总被引:1,自引:0,他引:1  
草地生态系统作为中国最大的陆地生态系统,其碳循环的动态变化在全球碳收支平衡中扮演着重要角色。为探讨短花针茅(Stipa breviflora)荒漠草原净CO_2交换的日变化和季节变化特征,阐明放牧及土壤温度和湿度的季节性变化对生态系统净CO_2交换的影响,采用便携式光合仪LI-6400(LI-COR,USA)和密闭式箱法于2013—2014年生长季(5—10月)测定了对照(CK)、轻牧(LG)、中牧(MG)和重度放牧(HG)4个处理的生态系统净碳交换。结果表明:短花针茅荒漠草原净CO_2交换具有明显的日变化规律。净碳交换的日动态主要受气温影响,昼间净碳吸收随温度升高而降低,甚至出现碳释放;夜间随气温降低,生态系统呼吸减弱。整个生长季,短花针茅荒漠草原表现为碳汇,在植物生长季的高峰期,净碳吸收达到峰值(-2.96mol·m~(-2)·s~(-1))。年际间生态系统净碳交换差异显著(P0.000 1),净碳交换主要受降水调控。净碳吸收与土壤温度在两年间均呈显著的二次多项式关系(P0.01),而与土壤湿度的关系则是2013年为显著的线性关系(P0.000 1),2014年为显著的二次多项式关系(P0.01)。土壤温度对生态系统净CO_2交换变化的解释能力为0.31~0.36,而土壤湿度对生态系统净CO_2交换变化的解释能力为0.26~0.51。HG区净碳吸收速率(-0.66mol·m~(-2)·s~(-1))显著低于CK区(-1.65mol·m~(-2)·s~(-1))。放牧减弱了荒漠草原的固碳潜力。  相似文献   

6.
全球变化是多个因子发生变化的过程,土壤CH_4通量对全球变化的响应是多个因子对土壤CH_4通量影响的综合体现。近年来,内蒙古地区大气温度不断升高,大气氮沉降量不断增加,因此,研究增温和氮沉降对草地生态系统土壤CH_4通量的影响对全球碳收支平衡具有重要意义。为了研究增温、氮沉降及其交互作用对短花针茅(Stipa breviflora)荒漠草原土壤CH_4通量的影响,2013─2014年生长季(5─10月)采用静态箱法,对长期(2006年以来)增温和施氮条件下土壤CH_4通量进行测定,同时连续监测了10 cm土壤温度和土壤湿度。结果表明:在增温区,土壤温度和土壤湿度均会显著增加,而在施氮区,土壤湿度则会显著降低(P0.000 1)。生长季短花针茅荒漠草原土壤CH_4的平均吸收量为40.2~50.5μg·m~(-2)·h~(-1),年份会对土壤CH_4的吸收产生显著影响(P=0.009 7),但增温、施氮及其交互作用对土壤CH_4的吸收均无显著影响(P0.05)。在年际间,土壤CH_4的吸收与土壤温度间的关系不同,2013年二者呈显著的线性相关(P=0.029 1),而2014年二者呈显著的二次多项式关系(P=0.039 6);土壤CH_4的吸收与土壤湿度仅在2013年呈显著的二次多项式关系(P=0.012 4),2014年二者之间没有明显关系。土壤温度和土壤湿度或月降水量共同对土壤CH_4吸收变化的解释能力(R~2:0.37~0.76)高于单因子(R~2:0.20~0.34)。该研究表明在生长季短花针茅荒漠草原大气CH_4以汇为主;大气增温和氮沉降对短花针茅荒漠草原土壤CH_4的吸收无影响。  相似文献   

7.
疏勒河流域绿洲荒漠过渡带土壤呼吸特征及其影响因素   总被引:2,自引:0,他引:2  
土壤呼吸是陆地生态系统碳循环研究的关键问题之一。为了研究绿洲荒漠演化过程土壤呼吸的变化特征及其影响因素,运用地统计学的方法分析了500 m间隔取样尺度下甘肃省玉门镇饮马农场一条绿洲荒漠过渡带(荒漠、荒漠-绿洲、绿洲)土壤呼吸速率在不同时期(5、7、10月)的时空变异性,并结合过渡带不同监测点的植被盖度、土壤温度、空气相对湿度、土壤容积含水量以及土壤0~20 cm土层pH值、盐分、HCO_3~-、Cl~-、Ca~(2+)、Mg~(2+)、SO_4~(2-)、K~+、Na~+等理化性质分析,探讨了环境因素与土壤呼吸速率之间的相关性。结果表明:从荒漠向绿洲过渡,土壤呼吸速率从荒漠端的1.21μmol·m~(-2)·s~(-1)逐渐增大到绿洲端的4.85μmol·m~(-2)·s~(-1),增加3倍。从季节变化来看,7月份土壤呼吸速率最大,10月份土壤呼吸速率最小,5月份土壤呼吸速率居中。绿洲荒漠过渡带土壤呼吸速率的变异系数为64.1%~78.1%,属中等变异。从空间相关性来看,7月和10月土壤呼吸速率的块金值为0.065和0.113,均小于0.25,空间相关性强;5月份土壤呼吸速率的块金值为0.690,空间相关性中等。研究发现土壤呼吸速率与土壤温度呈极显著正相关关系(P=0.002)。  相似文献   

8.
泥炭地在全球碳循环中起着重要作用,其碳源、碳汇功能的转变已成为研究全球气候变化的热点。为研究湖北省神农架林区大九湖亚高山泥炭湿地碳排放特征及影响因素,采用涡度相关法对大九湖泥炭湿地CO_2通量进行了观测,选取2016年6—8月作为生长季和2015年12月—2016年2月作为非生长季,对比分析泥炭湿地在不同生长季节CO_2通量的变化规律及其影响因子。结果表明,(1)大九湖泥炭湿地生态系统生长季CO_2通量的日变化规律明显,整体呈"U"型曲线,日变化范围为-6.84~6.65μmol·m~(-2)·s~(-1);非生长季CO_2通量变化趋势平缓,在-0.88~5.19μmol·m~(-2)·s~(-1)之间。(2)白天生长季与非生长季的CO2通量与光量子通量密度(PPFD)均符合直角双曲线关系,但生长季PPFD与CO_2通量的拟合效果(R~2=0.427 3,P0.01)优于非生长季(R~2=0.045 6,P0.01)。(3)生长季的气温(Ta)与CO_2通量呈二次曲线相关(R~2=0.248 6,P0.01),CO_2通量随Ta的升高呈先增加后降低;非生长季Ta与CO_2通量(R~2=0.042 8,P0.01)相关性显著,两者呈负相关,但Ta仅能解释CO_2通量4.28%的变异数据。(4)土壤温度(Ts)和土壤含水量(SWC)对CO_2通量的影响,主要体现在生态系统呼吸上。生长季夜间生态系统呼吸受Ts与SWC的共同影响(R~2=0.199 5,P0.01),生态系统呼吸的温度敏感性Q10值为1.84;非生长季夜间生态系统呼吸与Ts、SWC的相关性均不显著(P0.05)。  相似文献   

9.
藏北高寒草甸是全球高寒草地的重要组成部分,是对气候变化最敏感的植被类型之一。关于高寒草地植被指数与环境温湿度因子的关系还存在着诸多不确定性,这限制了准确预测高寒草地植被生长对将来气候变化的响应。定量化高寒草地植被指数与气候因子的关系利于预测将来气候变化对高寒草地植被生长的影响。该研究基于相关分析和多重逐步回归分析探讨了藏北高原不同海拔高度(4300、4500和4700 m)的高寒草甸2011─2014年每年6─9月的归一化植被指数(normalized difference vegetation index,NDVI)、增强型植被指数(Enhanced Vegetation Index,EVI)与土壤温度、土壤湿度、空气温度、相对湿度、饱和水汽压差的相互关系。相关分析表明,3种海拔的NDVI(4 300 m:r=0.79,P=0.000;4 500 m:r=0.80,P=0.000;4 700 m:r=0.52,P=0.005)和EVI(4 300 m:r=0.61,P=0.001;4 500 m:r=0.66,P=0.000;4 700 m:r=0.53,P=0.004)都随着土壤湿度的增加显著增加;3种海拔的NDVI(4 300 m:r=-0.68,P=0.000;4 500 m:r=-0.56,P=0.002;4 700 m:r=-0.40,P=0.037)和EVI(4 300 m:r=-0.56,P=0.002;4 500 m:r=-0.49,P=0.008;4 700 m:r=-0.46,P=0.014)都随着饱和水汽压差的增加显著降低;植被指数与环境温湿度因子的相关系数随着海拔的变化而变化;NDVI和EVI与环境温湿度因子的相关系数存在差异。多重逐步回归分析表明,土壤湿度一个因子解释了3种海拔的归一化植被指数、海拔4 300和4 500 m的增强型植被指数的变异,而海拔4 700 m的土壤湿度和土壤温度共同了解释了增强型植被指数的变异,其中土壤湿度的贡献较大。因此,在藏北高寒草甸,植被指数对气候变化的敏感性可能随着海拔的变化而变化,NDVI和EVI对气候变化的敏感性可能不同,土壤湿度主导着NDVI和EVI的季节变化。  相似文献   

10.
降雨脉冲对土壤呼吸具有瞬间的激发效应,地表凋落物是土壤有机碳的重要来源,并影响降雨的下渗过程和土壤含水量。降雨对土壤呼吸的激发效应是否受地表凋落物的影响?这一问题目前尚不清楚。针对我国亚热带-暖温带气候过渡区麻栎(Quercus acutissima)林和水杉(Metasequoia glyptostroboides)林2种林型开展不同凋落物输入水平(对照、添加凋落物和去除凋落物)下模拟降雨事件对土壤呼吸影响研究,以阐明不同凋落物条件下土壤呼吸对降雨脉冲的响应规律。结果表明:就麻栎次生林而言,对照、添加凋落物和去除凋落物处理土壤呼吸速率在降雨10 min时均达到峰值,分别为4.72、11.68和5.12μmol·m~(-2)·s~(-1),添加凋落物增强了降雨脉冲的激发效应,去除凋落物与对照处理土壤呼吸速率在降雨事件后无显著差异(P0.05)。地表凋落物层对麻栎次生林在降雨后的土壤呼吸速率变化具有重要影响。水杉林3种凋落物水平下土壤呼吸均不存在降雨激发效应,且凋落物添加与去除均显著降低水杉林土壤呼吸速率(P0.05)。麻栎林土壤呼吸与土壤湿度呈显著正相关关系(P0.05或P0.01)。水杉林添加凋落物条件下土壤呼吸速率与土壤温度呈显著正相关关系(P0.05)。该研究表明土壤呼吸对降雨脉冲的响应与森林类型、地表凋落物覆盖与否有密切关系,因此森林生态系统碳循环的变化除了考虑气候变化以外,还必须考虑林型和地表凋落物状况。  相似文献   

11.
为研究在模拟增温状态下高寒湿地土壤呼吸的动态变化,并探究增温状态对土壤呼吸产生的影响,于2016年6月—2017年9月通过LI-8100土壤碳通量测定系统(开路式)对实验样地矮嵩草草甸(Kobresia humilis)的土壤呼吸速率及地下5、10和15 cm土壤温度、土壤体积含水量进行测定,结果表明:模拟增温有利于提高土壤呼吸速率,其与自然状态(CK)、增温状态(W)土壤呼吸速率之间有极显著性差异(P0. 01);土壤呼吸速率与各层土壤温度和土壤体积含水量均有极显著相关性(P0. 01),自然状态下的温度敏感性(Q10值)均比增温状态下的Q10值大,并且Q10值随着土壤深度的增加而增加;然而土壤温度与体积含水量共同影响下的土壤呼吸作用在2 a内减弱;增温状态有利于提高地上及地下生物量,并且对浅层地下生物量作用明显;与不增温比较,增温有利于提高土壤有机质含量,但差异随土壤深度的增加而依次减少。研究表明,连续2 a的增温对高寒湿地土壤呼吸产生促进作用,增温环境有利于促进土壤碳释放。  相似文献   

12.
西藏高原青稞三种植被指数对红外增温的初始响应   总被引:3,自引:0,他引:3  
气候变暖影响着农作物生长及其植被指数。为了探讨西藏高原青稞(Hordeum vulgare Linn.var.nudum Hook.f.)归一化植被指数(normalized difference vegetation index,NDVI)、归一化绿波段差值植被指数(normalized green difference vegetation index,GNDVI)和土壤调节植被指数(soil adjusted vegetation index,SAVI)对气候变暖的初始响应,2014年5月在西藏达孜县布设了一个红外增温实验(3个水平,即对照,1 000和2 000 W红外增温)。通过对2014年6─9月利用农业多光谱相机获取的3种植被指数和利用HOBO微气候观测系统获取的两个深度(5和20 cm)的土壤温湿度的统计分析,探讨了西藏高原青稞植被指数对红外增温的响应及其与土壤温湿度的相互关系。结果表明,1 000和2 000 W的增温使5 cm的土壤温度(t5)分别升高了约1.62和1.77℃,使20 cm的土壤温度(t20)分别升高了约1.16和1.43℃;相反使5 cm的土壤湿度(SM5)分别下降了约1.8%和14.1%,使20 cm的土壤湿度(SM20)分别下降了21.6%和14.7%。1 000 W的增温使NDVI、GNDVI和SAVI分别增加了约2.4%、4.3%和0.5%;2 000 W的增温则使NDVI、GNDVI和SAVI分别增加了约5.5%、5.3%和4.8%,尽管增加幅度并不显著。单因子回归分析表明,t5与NDVI(r2=0.110,P=0.026)和GNDVI(r2=0.254,P=0.000 4)为负相关,而与SAVI无关(r2=0.069,P=0.082);t20与GNDVI为负相关(r2=0.218,P=0.001),而与NDVI(r2=0.040,P=0.190)和SAVI(r2=0.014,P=0.443)无关;SM5与NDVI(r2=0.277,P=0.000 2)、GNDVI(r2=0.394,P=0.000 0)和SAVI(r2=0.208,P=0.002)为正相关。SM20与GNDVI为正相关(r2=0.193,P=0.003),而与NDVI(r2=0.059,P=0.107)和SAVI(r2=0.037,P=0.209)无关。多重回归分析表明,SM5主导着NDVI、GNDVI和SAVI的变异。偏相关分析表明,NDVI、GNDVI和SAVI与SM5的相关系数分别为0.442(P=0.003)、0.412(P=0.007)和0.404(P=0.008);与SM20的相关系数分别为-0.042(P=0.792)、0.051(P=0.749)和-0.033(P=0.837);与t5的相关系数分别为-0.154(P=0.332)、-0.019(P=0.907)和-0.170(P=0.282);与t20的相关系数分别为0.228(P=0.147)、-0.041(P=0.795)和0.268(P=0.086)。因此,红外增温引起的干旱抑制了青稞的生长,进而影响了植被指数,即植被指数的不显著变化可能与红外增温引起的土壤干旱有关。  相似文献   

13.
为揭示枯落物输入变化对林地土壤呼吸的影响,采用枯落物添加和去除试验(DIRT),在对滇中高原磨盘山的云南松(Pinus yunnanensis)林6种不同枯落物处理(对照CK、双倍枯落物DL、去除枯落物NL、去除有机层和A层O/A-Less、去除根系NR、无输入NI)样地土壤呼吸(Rs)和理化性质的测定的基础上,对枯落物输入变化下云南松林地土壤呼吸和土壤理化性质及两者的关系进行了研究。结果表明,(1)不同枯落物处理及不同月份间土壤呼吸差异极显著(P0.01),不同枯落物处理样地的年均土壤呼吸速率分别为:R_(s(DL))=8.32μmol·m~(-2)·s~(-1)、R_(s(CK))=6.34μmol·m~(-2)·s~(-1)、R_(s(NL))=5.71μmol·m~(-2)·s~(-1)、R_(s(NR))=4.32μmol·m~(-2)·s~(-1)、R_(s(O/A-Less))=3.69μmol·m~(-2)·s~(-1)、R_(s(NI))=2.54μmol·m~(-2)·s~(-1)。(2)不同处理对0—10 cm土层土壤水分(φ_w)、土壤温度(t)、全氮(TN)、全碳(TC)、硝态氮(NO3~-)、有机碳(TOC)、p H值和土壤总孔隙度(SP)影响显著(P0.05)。(3)R_s与t和TN呈显著正相关关系(P0.05),而与p H呈极显著负相关关系(P0.01);R_s与φ_w、NO_3~-、TC、SOC、SP、容重和C/N无显著相关性(P0.05)。研究结果对于评估未来气候变化条件下云南松森林生态系统的碳平衡具有重要意义。  相似文献   

14.
城市绿地生态系统雨季土壤呼吸对降雨变化的响应   总被引:1,自引:0,他引:1  
全球气候变化的可能后果之一是干旱频繁,强降雨增多。城市绿地生态系统土壤呼吸是陆地碳循环的重要组成部分,探讨强降雨对城市绿地生态系统土壤呼吸的影响,有助于预知在全球变化背景下土壤CO2排放的可能反馈机制。在多年定位试验的基础上,开展降雨改变试验,采用全自动多通量箱对降雨前后城市绿地生态系统土壤呼吸(Rs)和环境因子等进行原位全天候连续监测,分析Rs对正常降雨、增加50%降雨(增雨)和减少50%降雨(减雨)的响应。结果表明,(1)增雨显著提高了土壤湿度(W,0~5cm),而对土壤温度(T,0~5cm)没有显著影响(P0.05)。与对照相比,增雨导致Rs显著提高了1.43%(P0.05),减雨对Rs无显著影响(P0.05)。(2)土壤湿度与Rs呈显著负相关(P0.05),土壤温度与Rs呈显著正相关(P0.05),且对Rs有一定的促进趋势。(3)降雨时间为20min时,Rs的下降率最大;20min以后,Rs下降率逐渐变小,说明降雨时间越长,土壤释放CO2速率越慢,当降雨达到一定时间后,土壤释放CO2速率有所回升;回归分析发现,降雨量与呼吸速率的变化率呈二次相关关系(P0.05),总体上降雨促进了Rs。(4)不同降雨处理均对土壤温度敏感系数(Q10)表现出显著的影响,其中增雨和减雨均降低了土壤水分敏感性;不同降雨时期土壤水分敏感性大致表现为:在雨季开始和结束时,Rs对水分敏感性较高,而雨季中期Rs对水分敏感性较低。这意味着在城市绿地生态系统中,增雨或减雨均对Rs有不同程度的刺激作用,这很可能减弱城市绿地生态系统土壤的固碳潜力。  相似文献   

15.
土壤微生物生物量在陆地生态系统碳氮磷循环中起着重要作用,是森林生态系统物质循环和能量流动的重要组成部分.以青藏高原东缘的川西高山森林土壤为研究对象,将暗针叶林土壤(3 900 m)沿海拔上移到高山林线(4 000 m),模拟气候变暖对土壤有机层和矿质土壤层微生物生物量的影响.结果表明,海拔上升导致土壤温度升高,但增温并未对雪被期高山森林土壤微生物生物量及其比值产生显著影响.方差分析表明,土壤层次对微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)影响都极显著(P0.01),对MBC/MBN、MBN/MBP影响显著(P0.05),雪被不同时期对MBN、MBP、MBC/MBN、MBC/MBP、MBN/MBP影响极显著(P0.01);相关分析表明,MBC、MBN、MBP与土壤温度和土壤湿度呈现显著正相关(P0.05);MBN、MBP与冻融次数之间呈现极显著正相关(P0.01);MBC/MBN、MBN/MBP、MBC/MBP与温度和雪被厚度呈现极显著正相关(P0.01).从长远来看,未来气候变暖对高山森林生态系统碳氮磷平衡的影响将取决于土壤微生物生物量和群落结构对这些环境因子的响应和反馈.  相似文献   

16.
合肥市城乡梯度下麻栎林土壤呼吸特征及影响因素   总被引:1,自引:0,他引:1  
以合肥市城乡梯度下3个森林公园为研究对象,于2017年4月-2018年6月开展中心城区—城郊—乡村梯度下麻栎林(Quercus acutissima)土壤呼吸速率及主要环境因子的野外观测。结果表明:城乡梯度森林土壤呼吸具有明显的季节性变化,其中夏季较高、冬季最低,呈单峰型曲线,年均土壤呼吸速率大小顺序为乡村(1.89μmol·m~(-2)·s~(-1))中心城区(1.86μmol·m~(-2)·s~(-1))城郊(1.80μmol·m~(-2)·s~(-1));土壤温湿度及土壤活性碳氮沿城乡梯度呈递减格局,土壤C、N在城乡梯度不同位置变异很大,3个区域的pH值差异不显著;不同城乡梯度下森林土壤呼吸速率与土壤温度呈显著正相关(P0.01),中心城区和城郊森林土壤呼吸速率与含水量呈负相关,土壤理化性质对城乡梯度森林土壤呼吸的影响因区域不同而有差异;不同城乡梯度下森林的Q_(10)值存在一定程度差异,Q_(10)值大小顺序为:城郊(2.15)中心城区(2.10)乡村(1.86)。因此,土壤温度及土壤理化性质是造成城乡梯度森林土壤呼吸差异的主要原因。研究结果对于了解控制城乡梯度森林土壤呼吸的因素和更准确估测城市碳通量具有重要作用,可为管理和保护城市森林生态环境提供理论支持。  相似文献   

17.
藏北高原高寒草甸光能利用效率对增温增水的响应   总被引:1,自引:0,他引:1  
量化植被光能利用效率对增温增水的响应是全球碳循环研究的重要组成部分。为了探讨藏北高原高寒草甸光能利用效率对气候变暖和降水增多的响应,2014年6月在藏北高原高寒草甸布设了1个增温增水实验平台,采用了完整的两因子(增温和增水)实验设计,每个因子设置3个处理水平(不处理、低幅度和高幅度处理),共9个处理组合。设置40 cm和80 cm的开顶式生长箱实现两个幅度的实验增温(分别增加了0.34℃和1.11℃的日最低空气温度),低幅度和高幅度增水处理分别增加了15%和30%的降水。基于中分辨率成像光谱仪的植被光能利用效率算法,利用观测的饱和水汽压差和日最低空气温度模拟了2014—2016年生长季节(6—9月)植被的光能利用效率。结果表明,增温对日最低空气温度(F=39.10,P=0.000)、饱和水汽压差(F=47.45,P=0.000)和光能利用效率(F=4.20,P=0.032)都有显著影响,而增水对饱和水汽压差(F=5.72,P=0.012)有显著影响。增温引起的光能利用效率的变化与增温幅度表现为二次曲线关系,与增温引起的饱和水汽压差的变化量表现为负相关关系。增水处理对光能利用效率无显著影响,且增水引起的光能利用效率的变化与增水引起的饱和水汽压差的变化量呈负相关关系。因此,降水增多可能对藏北高原高寒草甸的光能利用效率无显著影响,而光能利用效率随着增温幅度的变化而变化。  相似文献   

18.
高寒草甸是青藏高原重要的草地类型之一。目前增温对高寒草甸温室气体通量影响的研究较少,尤其在不同尺度的增温条件下,温室气体通量的响应尚不明确。因此,设置多梯度增温实验,模拟未来不同幅度增幅情况,对预测高寒草甸温室气体通量的变化具有重要意义。为深入地认识气候变暖对高寒草甸温室气体通量的影响,假设高寒草甸温室气体通量的周转速率在增温条件下随增温梯度而加快。在青藏高原纳木错地区高寒草甸,采用开顶箱法(Open-top chambers,OTCs)设置对照(T0,不增温)以及4个不同程度的增温处理(T1、T2、T3、T4,分别增温1、2、3、4℃),结合静态箱-气相色谱法对增温处理后的CO_2、CH_4和N_2O通量进行同步观测。对3个生长季(2013—2015年)进行连续观测发现:(1)地下5 cm土壤3年的平均温度相对于对照处理分别增加1.73℃(T1)、1.83℃(T2)、3.03℃(T3)和3.53℃(T4);(2)高寒草甸生长季平均呼吸(CO_2)为(42.6±9.11)mg·m~(-2)·h~(-1),同时具有较强的CH_4吸收能力,达到(-47.96±8.76)μg·m~(-2)·h~(-1),其N_2O通量维持在较低水平,为(0.3±0.46)μg·m~(-2)·h~(-1);(3)在高寒草甸生长季,温室气体通量与温度以及水分均具有显著的相关关系,但增温未能显著改变生长季温室气体平均通量。以上结果表明,增温所引起的其他环境因素的改变(如伴随不同梯度增温下土壤水分变化的不确定性),导致高寒草甸在短期内进行内部调节,并维持温室气体通量稳定。  相似文献   

19.
藏北高原高寒草甸生态系统呼吸对增温的响应   总被引:1,自引:0,他引:1  
生态系统呼吸(ER)作为生态系统最大的碳通量途径之一,其微小的波动都会引起大气中二氧化碳浓度的显著变化。本研究利用开顶箱(OTCs)式装置在藏北高原高寒草甸生态系统设置不同增温梯度实验,模拟未来增温2℃(T1)和增温4℃(T2)情景,探究增温对生态系统呼吸(ER)的影响。研究结果表明:(1)在2015整个生长季及生长季前期,模拟未来增温2℃和4℃均显著降低了ER(2015年整个生长季T1减少了ER为34%,T2减少了ER为31%;生长季前期T1减少了ER为35%,T2减少了ER为36%),但在生长季后期,模拟未来实验增温2℃显著降低ER(T1减少了34%),而模拟未来实验增温4℃没有显著改变ER;(2)回归分析结果表明,在整个2015年生长季及生长季前期,土壤水分是决定生态系统呼吸(ER)的关键因素,而生长季后期ER主要受土壤温度影响,因此在半干旱的高寒草甸生态系统中,土壤水分和土壤温度二者共同调节生态系统呼吸(ER)。研究结果表明,在干旱的生长季,未来增温可能会抑制高寒草甸生态系统的碳排放。  相似文献   

20.
温度是全球气候变化最重要的生态因子,过渡区生态系统的能量流动和物质循环过程极易受到气候变化的影响。为揭示暖温带-中温带过渡区森林土壤呼吸对温度变化的响应,选择在暖温带-中温带过渡区分布面积较大的长白落叶松(Larix olgensis)、红松(Pinus koraiensis)、油松(Pinus tabuliformis)人工林和天然阔叶混交林4种森林类型,利用Li-8100红外气体分析仪于2010─2013年连续观测土壤呼吸速率,同时利用森林小气候梯度观测系统连续同步观测大气温度、大气降水和土壤温度等环境因子,系统研究了土壤呼吸速率动态及其温度敏感性。结果表明:长白落叶松、红松、油松和阔叶混交林的年平均土壤呼吸速率(Rs,以CO_2计)分别为(2.31±0.01)、(2.07±0.71)、(1.55±0.03)和(2.24±0.02)μmol·m~2·s~(-1);4种森林类型的Rs与10 cm土壤温度(t_(10))均具有极显著的相关关系(P=0.0000.01);生长季期间落叶松、红松、油松人工林和天然阔叶混交林的Q_(10)值分别为3.32、4.46、4.12和3.59,其中红松人工林Rs对t10的温度变化最敏感,而天然阔叶林和落叶松人工林的敏感性相对较低。本研究还对非生长季(11月─翌年3月)期间长白落叶松人工林的土壤呼吸进行了连续监测,并依据非生长季期间土壤温度的变化,将非生长季期间的土壤呼吸分为冻结期(t_(10-mean):10.0~2.0℃)、冻融期(t_(10-mean):0.5~2.0℃)和非冻结期(t_(10-mean):2.0℃)3个阶段。结果显示:长白落叶松人工林在非生长季期间仍有微弱的呼吸作用(以CO_2计,0.01~1.38μmol·m~2·s~(-1)),整个非生长季期间Rs与t_(10)有极显著相关关系(r~2=0.586 3,P=0.0000.01),非生长季冻结期的Rs与t_(10)无显著相关关系(P=0.5030.5),冻融期的Rs变化较剧烈,且较冻结期有较明显的增加;整个非生长季落叶松人工林的Q_(10)值为4.65,是生长季的1.40倍。研究结果对进一步阐明气候带过渡区不同森林类型土壤呼吸对气候变化的响应具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号