首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
From Red Lists to Species of Conservation Concern   总被引:3,自引:0,他引:3  
Abstract:  National red lists of threatened animal and plant species prepared according to the criteria of the World Conservation Union (IUCN) adequately reflect the extinction risk of species within a country but cannot be used directly to set conservation priorities. In particular, the significance of national populations for the conservation of the species as a whole is not taken into account. We present a procedure that can be used to assess national responsibility based on the national red-list status of a species, the international importance of the national population, and the species' "historical rarity" status. We distinguished five responsibility classes for breeding birds: B1, threatened species with internationally important populations in Switzerland; B2, threatened species with internationally less important populations; B3, nonthreatened species with internationally important populations; B4, nonthreatened species with internationally less important populations; and B5, species that have never been common in Switzerland. Two responsibility classes were distinguished for birds occurring in Switzerland as visitors: G1, species with large concentrations in Switzerland and an unfavorable conservation status in Europe, and G2, species with large concentrations in Switzerland and a favorable conservation status in Europe. Two additional classes (G3 and G4) for visiting species occurring in internationally less important numbers are possible but were not analyzed in detail. Responsibility classes B1, B2, B3, G1, and G2 were defined as species of national conservation concern. We developed the method for birds in Switzerland, but it can be used in other countries and for other taxonomic groups as well. It is particularly suitable where national red lists are established according to IUCN guidelines.  相似文献   

2.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

3.
The successful implementation of the Convention on Biological Diversity's post-2020 Global Biodiversity Framework will rely on effective translation of targets from global to national level and increased engagement across diverse sectors of society. Species conservation targets require policy support measures that can be applied to a diversity of taxonomic groups, that link action targets to outcome goals, and that can be applied to both global and national data sets to account for national context, which the species threat abatement and restoration (STAR) metric does. To test the flexibility of STAR, we applied the metric to vascular plants listed on national red lists of Brazil, Norway, and South Africa. The STAR metric uses data on species’ extinction risk, distributions, and threats, which we obtained from national red lists to quantify the contribution that threat abatement and habitat restoration activities could make to reducing species’ extinction risk. Across all 3 countries, the greatest opportunity for reducing plant species’ extinction risk was from abating threats from agricultural activities, which could reduce species’ extinction risk by 54% in Norway, 36% in South Africa, and 29% in Brazil. Species extinction risk could be reduced by a further 21% in South Africa by abating threats from invasive species and by 21% in Brazil by abating threats from urban expansion. Even with different approaches to red-listing among countries, the STAR metric yielded informative results that identified where the greatest conservation gains could be made for species through threat-abatement and restoration activities. Quantifiably linking local taxonomic coverage and data collection to global processes with STAR would allow national target setting to align with global targets and enable state and nonstate actors to measure and report on their potential contributions to species conservation.  相似文献   

4.
Abstract:  We assessed the extinction risks of Malagasy amphibians by evaluating their distribution, occurrence in protected areas, population trends, habitat quality, and prevalence in commercial trade. We estimated and mapped the distribution of each of the 220 described Malagasy species and applied, for the first time, the IUCN Red List categories and criteria to all species described at the time of the assessment. Nine species were categorized as critically endangered, 21 as endangered, and 25 as vulnerable. The most threatened species occur on the High Plateau and/or have been subjected to overcollection for the pet trade, but restricted extent of occurrence and ongoing habitat destruction were identified as the most important factors influencing extinction threats. The two areas with the majority of threatened species were the northern Tsaratanana-Marojejy-Masoala highlands and the southeastern Anosy Mountains. The current system of protected areas includes 82% of the threatened amphibian species. Of the critically endangered species, 6 did not occur in any protected area. For conservation of these species we recommend the creation of a reserve for the species of the Mantella aurantiaca group, the inclusion of two Scaphiophryne species in the Convention on the International Trade in Endangered Species Appendix II, and the suspension of commercial collecting for Mantella cowani . Field surveys during the last 15 years reveal no pervasive extinction of Malagasy amphibians resulting from disease or other agents, as has been reported in some other areas of the world.  相似文献   

5.
Abstract:  A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions.  相似文献   

6.
Abstract: One particular challenge in reducing the loss of biodiversity by 2010, as agreed on at the Earth Summit in 2002, is to assign conservation tasks to geographic or administrative entities (e.g., countries or regions) on different geographical scales. To identify conservation tasks, it is imperative to determine the importance of a specific area for the global survival of a species. So far, these national or subnational responsibilities for the conservation of species have been included differently in methods prioritizing conservation. We reviewed how 12 European and 3 non‐European methods determined national conservation responsibilities and evaluated the international importance of a biological population. Different countries used different methodologies, which made a direct comparison of assessments of national responsibilities among countries extremely difficult. Differences existed in the importance criteria used. Criteria included population decline, range reduction, rarity status, degree of isolation of a population, endemism, proportional distribution, and geographic location. To increase comparability, it is imperative to develop criteria for which data are generally available and to standardize the methodology among countries. A standardized method would allow conservation decisions to be based on the conservation status of a species and on the responsibility of a geographic or administrative entity for the survival of a species. We suggest that such a method should use a scalable index of proportional distribution, taxonomic status, and the distribution pattern of a taxon or species as key elements. Such a method would allow for the creation of hierarchical lists and would be highly relevant for parts of the world with multiple political jurisdictions or state unions and for nations with regional governmental structures. Conservation priorities could then be reasonably set by combining national responsibility assessments with the international conservation status of a species.  相似文献   

7.
Abstract:  The ethical, legal, and social significance of the U.S. Endangered Species Act of 1973 (ESA) is widely appreciated. Much of the significance of the act arises from the legal definitions that the act provides for the terms threatened species and endangered species. The meanings of these terms are important because they give legal meaning to the concept of a recovered species. Unfortunately, the meanings of these terms are often misapprehended and rarely subjected to formal analysis. We analyzed the legal meaning of recovered species and illustrate key points with details from "recovery" efforts for the gray wolf ( Canis lupus ). We focused on interpreting the phrase "significant portion of its range," which is part of the legal definition of endangered species. We argue that recovery and endangerment entail a fundamentally normative dimension (i.e., specifying conditions of endangerment) and a fundamentally scientific dimension (i.e., determining whether a species meets the conditions of endangerment). Specifying conditions for endangerment is largely normative because it judges risks of extinction to be either acceptable or unacceptable. Like many other laws that specify what is unacceptable, the ESA largely specifies the conditions that constitute unacceptable extinction risk. The ESA specifies unacceptable risks of extinction by defining endangered species in terms of the portion of a species' range over which a species is "in danger of extinction." Our analysis indicated that (1) legal recovery entails much more than the scientific notion of population viability, (2) most efforts to recover endangered species are grossly inadequate, and (3) many unlisted species meet the legal definition of an endangered or threatened species.  相似文献   

8.
Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island‐based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island‐wide conservation action because they are small (57% were <1 km2), uninhabited (74%), and occur in high‐ or middle‐income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale. La Biogeografía de Aves Marinas Amenazadas Globalmente y las Oportunidades de Conservación en Islas  相似文献   

9.
Hei F 《Ecology》2012,93(5):974-980
Underpinning the International Union for Conservation of Nature (IUCN) Red List is the assessment of extinction risk as determined by the size and degree of loss of populations. The IUCN system lists a species as Critically Endangered, Endangered, or Vulnerable if its population size declines 80%, 50%, or 30% within a given time frame. However, effective implementation of the system faces substantial challenges and uncertainty because geographic scale data on population size and long-term dynamics are scarce. I develop a model to quantify extinction risk using a measure based on a species' distribution, a much more readily obtained quantity. The model calculates the loss of the area of occupancy that is equivalent to the loss of a given proportion of a population. It is a very simple yet general model that has no free parameters and is independent of scale. The model predicted well the distributions of 302 tree species at a local scale and the distributions of 348 species of North American land birds. This area-based model provides a solution to the long-standing problem for IUCN assessments of lack of data on population sizes, and thus it will contribute to facilitating the quantification of extinction risk worldwide.  相似文献   

10.
There is little appreciation of the level of extinction risk faced by one‐sixth of the over 65,000 species assessed by the International Union for Conservation of Nature. Determining the status of these data‐deficient (DD) species is essential to developing an accurate picture of global biodiversity and identifying potentially threatened DD species. To address this knowledge gap, we used predictive models incorporating species’ life history, geography, and threat information to predict the conservation status of DD terrestrial mammals. We constructed the models with 7 machine learning (ML) tools trained on species of known status. The resultant models showed very high species classification accuracy (up to 92%) and ability to correctly identify centers of threatened species richness. Applying the best model to DD species, we predicted 313 of 493 DD species (64%) to be at risk of extinction, which increases the estimated proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to contain large numbers of threatened DD species are already conservation priorities, but species in these areas show considerably higher levels of risk than previously recognized. We conclude that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice. Taking into account information on DD species may therefore help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity. Predección del Estado de Conservación de Especies con Deficiencia de Datos  相似文献   

11.
Abstract:  The World Conservation Union (IUCN) published guidelines to apply the criteria developed for global red lists at subglobal levels. So far only a few national red lists have been prepared according to these regional guidelines. We present a procedure based on the regional guidelines that was developed for the most recent red list of breeding birds in Switzerland. Special attention was given to step 2 of the IUCN regional guidelines, which consists of adapting categories according to an assessment of the extent to which extinction risk of the national population is affected by populations in neighboring countries. To avoid subjective assessments we formalized this "up- and downgrading" procedure by defining rules to answer the questions asked in the regional guidelines. Some modifications to the assessment procedure were introduced to account for the specific situation of applying it to birds as a very mobile group and Switzerland as a small country. The up- and downgrading procedure resulted in a change in category for 49 of the 195 bird species assessed. Overall, 9 species were upgraded, 21 species were downgraded by one category, and 19 species were downgraded by two categories. Formalizing step 2 allowed consistent application of the regional guidelines for all species and will make future revisions of the national red list and comparisons between different lists easier.  相似文献   

12.
Abstract: An increasing number of empirical studies have been done on the effects of tropical forest fragmentation on avian communities, but few researchers have applied these theories to assess the vulnerability of birds in poorly researched countries such as Nicaragua. I used a logistic regression to determine which natural-history characteristics were most important in predicting a list of threatened birds known to occur in Nicaragua. The best model included five macroecological variables ( body weight, habitat specificity, trophic group, forest preference, and biogeography within Nicaragua). I used this model to generate predicted probabilities of extinction for all forest birds in Nicaragua. The predicted probability of extinction from the best model ranked 63% of the extinction-prone birds from La Selva, Costa Rica, and 59% of the extinction-prone birds from Barro Colorado, Panama, in the first quartile of all forest birds recorded in Nicaragua. This method provides a first-order approximation of which species deserve global and national priorities for conservation. The central and Atlantic regions of Nicaragua deserve high priority for conservation at a global scale, whereas the Atlantic region deserves the highest priority for conservation at a national scale. The Nicaraguan Ministry of Natural Resources and the Environment has done an adequate job of identifying areas for conservation based on the proportion of decreed nature reserves in each biogeographic region and the distribution of forest birds with a high predicted probability of extinction. Forest birds in central Nicaragua, however, may currently be the most vulnerable to local extinction because of low forest cover within decreed reserves.  相似文献   

13.
Abstract: The global amphibian crisis has resulted in renewed interest in captive breeding as a conservation tool for amphibians. Although captive breeding and reintroduction are controversial management actions, amphibians possess a number of attributes that make them potentially good models for such programs. We reviewed the extent and effectiveness of captive breeding and reintroduction programs for amphibians through an analysis of data from the Global Amphibian Assessment and other sources. Most captive breeding and reintroduction programs for amphibians have focused on threatened species from industrialized countries with relatively low amphibian diversity. Out of 110 species in such programs, 52 were in programs with no plans for reintroduction that had conservation research or conservation education as their main purpose. A further 39 species were in programs that entailed captive breeding and reintroduction or combined captive breeding with relocations of wild animals. Nineteen species were in programs with relocations of wild animals only. Eighteen out of 58 reintroduced species have subsequently bred successfully in the wild, and 13 of these species have established self‐sustaining populations. As with threatened amphibians generally, amphibians in captive breeding or reintroduction programs face multiple threats, with habitat loss being the most important. Nevertheless, only 18 out of 58 reintroduced species faced threats that are all potentially reversible. When selecting species for captive programs, dilemmas may emerge between choosing species that have a good chance of surviving after reintroduction because their threats are reversible and those that are doomed to extinction in the wild as a result of irreversible threats. Captive breeding and reintroduction programs for amphibians require long‐term commitments to ensure success, and different management strategies may be needed for species earmarked for reintroduction and species used for conservation research and education.  相似文献   

14.
Abstract: Following creation of the 2010 Biodiversity Target under the Convention on Biological Diversity and adoption of the United Nations Millennium Development Goals, information on status and trends of biodiversity at the national level has become increasingly important to both science and policy. National red lists (NRLs) of threatened species may provide suitable data for reporting on progress toward these goals and for informing national conservation priority setting. This information will also become increasingly important for developing species‐ and ecosystem‐based strategies for climate change adaptation. We conducted a thorough global review of NRLs in 109 countries and analyzed gaps in NRL coverage in terms of geography and taxonomy to determine priority regions and taxonomic groups for further investment. We then examined correlations between the NRL data set and gross domestic product (GDP) and vertebrate species richness. The largest geographic gap was in Oceania, followed by middle Africa, the Caribbean, and western Africa, whereas the largest taxonomic gaps were for invertebrates, fungi, and lichens. The comprehensiveness of NRL coverage within a given country was positively correlated with GDP and negatively correlated with total vertebrate richness and threatened vertebrate richness. This supports the assertion that regions with the greatest and most vulnerable biodiversity receive the least conservation attention and indicates that financial resources may be an integral limitation. To improve coverage of NRLs, we propose a combination of projects that target underrepresented taxa or regions and projects that provide the means for countries to create or update NRLs on their own. We recommend improvements in knowledge transfer within and across regions as a priority for future investment.  相似文献   

15.
Effects of Economic Prosperity on Numbers of Threatened Species   总被引:2,自引:0,他引:2  
Abstract: We used data from over 100 countries to investigate the link between numbers of threatened species and per-capita gross national product. We corrected for factors that might otherwise confound such a relationship. Our study was motivated by the continuing debate over the relationship between environmental degradation and per-capita income. Proponents of the environmental Kuznets-curve hypothesis argue that although environmental degradation may increase initially, increases in per-capita income will eventually result in greater environmental quality. Theoretical objections and the lack of widespread empirical evidence recently have thrown doubt on the existence of such a pattern. Treating threat to biodiversity as one potential indicator of environmental degradation, we divided threatened species into seven taxonomic groups ( plants, mammals, birds, amphibians, reptiles, fishes, and invertebrates) and analyzed each group separately. Count-data regression analysis indicated that the number of threatened species was related to per-capita gross national product in five of seven taxonomic groups. Birds were the only taxonomic group in which numbers of threatened species decreased throughout the range of developed countries' per-capita gross national product. Plants, amphibians, reptiles, and invertebrates showed increasing numbers of threatened species throughout this same range. If these relationships hold, increasing numbers of species from several taxonomic groups are likely to be threatened with extinction as countries increase in prosperity. A key challenge is to understand the interactions among consumer preferences, biology, and institutions that lead to the relationship observed for birds and to see whether this knowledge can be applied to conservation of other taxa.  相似文献   

16.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   

17.
To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2–3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.  相似文献   

18.
Abstract:  Many different systems are used to assess levels of threat faced by species. Prominent ones are those used by the World Conservation Union, NatureServe, and the Florida Game and Freshwater Fish Commission (now the Florida Fish and Wildlife Conservation Commission). These systems assign taxa a threat ranking by assessing their demographic and ecological characteristics. These threat rankings support the legislative protection of species and guide the placement of conservation programs in order of priority. It is not known, however, whether these assessment systems rank species in a similar order. To resolve this issue, we assessed 55 mainly vertebrate taxa with widely differing life histories under each of these systems and determined the rank correlations among them. Moderate, significant positive correlations were seen among the threat rankings provided by the three systems (correlations 0.58–0.69). Further, the threat rankings for taxa obtained using these systems were significantly correlated to their rankings based on predicted probability of extinction within 100 years as determined by population viability analysis (correlations 0.28–0.37). The different categorization systems, then, yield related but not identical threat rankings, and these rankings are associated with predicted extinction risk.  相似文献   

19.
Understanding causes and consequences of ecological specialization is of major concern in conservation. Specialist species are particularly vulnerable to human activities. If their food or habitats are depleted or lost, they may not be able to exploit alternative resources, and population losses may result. We examined International Union for Conservation of Nature (IUCN) Red List bat data and the number of roosts used per species (accounting for phylogenetic independence) to determine whether roost specialization is correlated with extinction risk. We found a significant correlation between the IUCN Red List category and the number of roost types used. Species that use fewer roost types had a higher risk of extinction. We found that caves and similar structures were the most widely used roost types, particularly by species under some level of risk of extinction. Many critically endangered, endangered, or vulnerable species used natural roosts exclusively, whereas less threatened species used natural and human‐made roosts. Our results suggest that roost loss, particularly in species that rely on a single roost type, may be linked to extinction risk. Our focus on a single life history trait prevented us from determining how important this variable is for extinction risk relative to other variables, but we have taken a first step toward prioritizing conservation actions. Our results also suggest that roost specialization may exacerbate population declines due to other risk factors, such as hunting pressure or habitat loss, and thus that management actions to preserve species under risk of extinction should prioritize protection of roosting sites.  相似文献   

20.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号