首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

IMPLICATIONS The results of the research presented in this paper can be readily used by school districts and policy-makers who are interested in purchasing hybrid school buses. Very little information about actual on-road fuel consumption or costs is available. Because the cost of a hybrid bus can be significantly more than the cost of a conventional bus, the information provided in this paper can be very useful for an agency to determine the costs and benefits of a hybrid bus. The information is also useful to researchers who are studying hybrid school and transit buses.  相似文献   

2.
Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.  相似文献   

3.
Abstract

Real‐time concentrations of black carbon, particle‐bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real‐time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban “background” sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20–40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child’s day, on average they contributed one‐third of a child’s 24‐hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within‐cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus’s own exhaust when windows were closed. Low‐emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high‐emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.  相似文献   

4.
A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.  相似文献   

5.
This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33–41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m?3 before and 13 to 33 μg m?3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.  相似文献   

6.
School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.  相似文献   

7.
Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 microg/m3 were higher than DPMtp (0.91 microg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 microg/m3, respectively) as compared with open (0.44 and 1.3 microg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 microg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 microg/m3 for DPMtp and 0.05 microg/m3 for PMck.  相似文献   

8.
Authors’ Reply     
ABSTRACT

Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 μg/m3 were higher than DPMtp (0.91 μg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m3, respectively) as compared with open (0.44 and 1.3 μg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 μg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m3 for DPMtp and 0.05 μg/m3 for PMck.

IMPLICATIONS PM2.5 measurements in two Seattle school buses showed average concentrations of 26 and 12 μg/m3 with windows closed and open, respectively. Virtually all PM2.5 was car bonaceous. Tracer measurements showed that bus self-pollution contributed approximately 50% of total PM2.5 concentrations with windows closed and 15% with windows open, with over three-quarters of these contributions attributed to crankcase emissions. Maintaining ventilation in buses clearly reduces total PM2.5 exposures and that from the buses' own emissions. The dual tracer method now offers researchers a new technique for explicit identification of single source contributions in settings with multiple sources of carbonaceous emissions.  相似文献   

9.
For the past several years, EPA has been measuring particulate emissions from a variety of heavy-duty diesel engines through contracts with Southwest Research Institute. Particulate emissions samples have been collected using an exhaust splitter to divert a fraction of the engine exhaust into a standard dilution tunnel. A small fraction of the diluted exhaust from the tunnel is pulled through a filter from which particulate mass and, in some cases, organic content of the particulate is determined. This paper discusses the sampling system and gives particulate emission factors that have been computed from truck and bus fuel consumption data as well as average truck and bus speed data from New York and Los Angeles (freeway and nonfreeway usage). Average particulate emission test results (steady state tests) for 2-stroke engines were 4.74 g/kg fuel and for 4-stroke engines were 2.64 g/kg fuel. Using average particulate emissions results, a particulate emission factor range of 0.8 to 1.3 g/km was computed. Nationwide diesel particulate emissions were calculated to be 88,000 metric tons per year.  相似文献   

10.
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.  相似文献   

11.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

12.
以公交车为例,利用OBS-2200和ELPI(electrical low pressure impactor)对深圳市重型柴油车(high-duty diesel vehicles,HDDVs)进行了3次在实际道路上的车载排放测试.根据测试数据计算了NOx和PM排放因子及百公里油耗,并分析了不同道路、不同工况对NOx...  相似文献   

13.
A fuel-based assessment of off-road diesel engine emissions   总被引:1,自引:0,他引:1  
The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.  相似文献   

14.
Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min−1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NOx and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.  相似文献   

15.
Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children’s exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children’s exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM2.5, PM10, black carbon (BC), CO, and CO2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 103 to 3.4 × 104 particles cm?3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses’ self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.  相似文献   

16.
We monitored two Seattle school buses to quantify the buses’ self pollution using the dual tracers (DT), lead vehicle (LV), and chemical mass balance (CMB) methods. Each bus drove along a residential route simulating stops, with windows closed or open. Particulate matter (PM) and its constituents were monitored in the bus and from a LV. We collected source samples from the tailpipe and crankcase emissions using an on-board dilution tunnel. Concentrations of PM1, ultrafine particle counts, elemental and organic carbon (EC/OC) were higher on the bus than the LV. The DT method estimated that the tailpipe and the crankcase emissions contributed 1.1 and 6.8 μg m?3 of PM2.5 inside the bus, respectively, with significantly higher crankcase self pollution (SP) when windows were closed. Approximately two-thirds of in-cabin PM2.5 originated from background sources. Using the LV approach, SP estimates from the EC and the active personal DataRAM (pDR) measurements correlated well with the DT estimates for tailpipe and crankcase emissions, respectively, although both measurements need further calibration for accurate quantification. CMB results overestimated SP from the DT method but confirmed crankcase emissions as the major SP source. We confirmed buses’ SP using three independent methods and quantified crankcase emissions as the dominant contributor.  相似文献   

17.
Biodiesels are often marketed as being cleaner than regular diesel for emissions. Emission test results depend on the biodiesel blend, but laboratory tests suggest that biodiesels decrease particulate matter, carbon monoxide, hydrocarbons, and air toxins when compared to regular diesel. Results for the amount of oxides of nitrogen (NOx) have been less conclusive. Tests have also not evaluated the commonly available ranges of biodiesel blends in the laboratory. Additionally, little information is available from on-road studies, so the effectiveness of using biodiesels to reduce actual emissions is unknown. A more complex relationship exists between engine operation and the rate of emission production than is typically evaluated using engine or chassis dynamometer tests. On-road emissions can vary dramatically because emissions are correlated to engine mode. Additionally, activity such as idling, acceleration, deceleration, and operation against a grade can produce higher emissions than more stable engine operating modes. Because these modes are not well captured in a laboratory environment, understanding on-road relationships is critical in evaluating the emissions reductions that may be possible with biodiesels. More tests and quantifications of the effects of different blends on engine and vehicle performance are required to promote widespread use of biodiesel. The objective of this research was to conduct on-road tests to compare the emission impacts of different blends of biodiesel to regular diesel fuel under different operating conditions. The team conducted on-road tests that utilized a portable emissions monitoring system that was used to instrument transit buses. Regular diesel and different blends of biodiesel were evaluated during on-road engine operation by instrumenting three in-use transit buses, from the CyRide system of Ames, Iowa, along an existing transit route.  相似文献   

18.
Emissions from 12 in-service heavy-duty buses powered by low- (LSD) and ultra low-sulfur (ULSD) diesel fuels were measured with the aim to characterize the profile of polycyclic aromatic hydrocarbons (PAHs) in the exhaust and to identify the effect of different types of fuels on the emissions. To mimic on-road conditions as much as possible, sampling was conducted on a chassis dynamometer at four driving modes, namely: mode 7 or idle (0% power), mode 11 (25% power), mode 10 (50% power) and mode 8 (100% power). Irrespective of the type of fuel used, naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were found to be the dominant PAHs in the exhaust emissions of the buses. However, the PAH composition in the exhausts of ULSD buses were up to 91±6% less than those in the LSD buses. In particular, three- and four-ringed PAHs were more abundant in the later than in the former. Lowering of fuel sulfur content not only reduced PAH emission, but also decreased the benzo(a)pyrene equivalent (BAPeq) and hence the toxicity of the exhaust. Result from multicriteria decision-making and multivariate data analysis techniques showed that the use of ULSD afforded cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained by the use of LSD.  相似文献   

19.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

20.
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号