首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potts DL  Scott RL  Cable JM  Huxman TE  Williams DG 《Ecology》2008,89(10):2900-2910
In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.  相似文献   

2.
随着对气候变化日趋关注,人们对生态系统气体交换及其主要影响因素进行了大量研究。短花针茅草原作为荒漠草原的典型代表,是亚洲特有的一种草原类型,是最干旱的草原类型,生态环境异常严酷,系统极度脆弱,稳定性差,在自然和人为干扰下极易退化。以短花针茅(Stipa breviflora)草原为研究对象,通过控制降雨量以及氮素添加对生态系统气体交换进行监测,研究气体交换对降雨量和氮素添加的响应过程,揭示降雨量和氮素添加对生态系统气体交换的影响作用。该文在2012年自然条件下,采用自动CO2通量系统(Li-6400, Li-COR, Lincoln, NE, USA)野外测定短花针茅(Stipa breviflora)草原生态系统气体交换数据,比较研究了增雨施肥(WN)、增雨不施肥(W)、减雨施肥(RN)、减雨不施肥(R)、单独施肥(N)、自然状况(CK)条件下2012年气体交换变化规律。结果表明:整个生长季生态系统净 CO2交换(NEE)、总的生态系统生产力(GEP)、生态系统呼吸值(ER)都呈先升高后降低的趋势,并在生长旺盛期(8月)达到最大值。NEE在N、W处理下有升高,其他处理都降低。ER在N、WN处理下都有升高,其他处理都降低。GEP在W、N、WN处理下都有升高,其他处理都降低。NEE、ER、GEP都是在N处理中达到最大值。  相似文献   

3.
High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.  相似文献   

4.
利用红外气体箱式法(Infrared Gas Analyze,IRGA),于2008年8月晴天对福州市马尼拉草坪(Zoysia matrel-la)的生态系统CO2净交换(NEE)和环境因子进行观测,阐明NEE及其组分的昼夜动态变化特征和影响因子。马尼拉草坪NEE的昼夜变化呈现为单峰型曲线,昼间其变化规律较强,夜间呈波动状态。NEE(取绝对值)最大值出现在10:00,最小值出现在16:00左右。太阳辐射、腔室内空气相对湿度和气温与NEE的相关性均为极显著(p<0.01),太阳辐射、腔室内空气相对湿度和5cm土壤温度共同解释NEE速率昼夜变异的89.30%。太阳辐射和腔室内空气相对湿度是影响草坪生态系统CO2净交换量日动态的主导环境因子;其中,太阳辐射可以单独解释NEE速率昼夜变化的79.70%,腔室内空气相对湿度可以单独解释NEE速率昼夜变化的50.40%;夏季晴天草坪生态系统在日尺度上表现为净吸收,平均CO2净交换速率为-4.11μmol/(m2.s)(负值表示吸收),平均日总通量为-0.18 mol/(m2.d)。  相似文献   

5.
This paper introduces an innovative modelling strategy aimed at simulating the main terms of net forest carbon budget (net primary production, NPP and net ecosystem exchange, NEE) in Tuscany (Central Italy). The strategy is based on the preliminary calibration and application of parametric and bio-geochemical models (C-Fix and BIOME-BGC, respectively), which simulate the behaviour of forest ecosystems close to equilibrium condition (climax). Next, the ratio of actual over-potential tree volume is computed as an indicator of ecosystem distance from climax and is combined with the model outputs to estimate the NPP and NEE of real forests. The per-pixel application of the new modelling strategy was made possible by the collection of several data layers (maps of forest type and volume, daily meteorological data and monthly normalized difference vegetation index (NDVI) images for the years 1999–2003) which served to characterize the eco-climatic and forest features of the region. The obtained estimates of forest NPP and NEE were evaluated against ground measurements of accumulated woody biomass and net carbon exchange. The results of these experiments testify the good potential of the proposed strategy and indicate some problem areas which should be the subject of future research.  相似文献   

6.
水位是影响滨海湿地生态系统蓝碳功能的重要因素。气候变化引起的海平面上升以及极端气候事件的频发,可能加快水位的变化,从而改变生态系统碳交换的过程。然而,滨海湿地碳汇功能响应水位变化的机制尚不清楚。为了评估水位对滨海湿地净生态系统CO2交换(NEE)特征的影响,以及验证DNDC(denitrification-decomposition)模型对模拟预测滨海湿地生态系统碳交换的适用性,该研究设计了野外水位控制试验(自然水位,地下20 cm水位、地表10 cm水位),并利用DNDC模型模拟和预测水位变化对滨海湿地NEE的影响。结果表明:(1)不同水位处理之间NEE差异显著,地表10 cm水位处理促进CO2吸收,地下20 cm水位则抑制CO2吸收;(2)经过校准和验证的DNDC模型可以准确模拟水位变化对黄河三角洲湿地NEE的影响,NEE模拟值的日动态与田间观测结果显著相关(R2>0.6);(3)通过改变气候、土壤和田间管理等输入参数对DNDC模型进行灵敏度检验,生态系统碳交换过程对日均温、降雨和水位改变的响应最为显著,其中,水位对NEE的影响主要作用于土壤呼吸(Rs)。未来气候情境下,不同水位变化下的生态系统碳交换过程随年份增长呈现不同的规律,因此未来的模拟研究应关注DNDC中水文模块和植被演替过程的完善。该研究可为预测水文变化情境下滨海湿地碳汇功能的未来发展以及政策制定提供参考。  相似文献   

7.
利用涡度相关技术对青海湖高寒湿地生态系统夏季CO2通量日变化特征进行分析,并且结合气象观测数据对CO2通量日变化的影响因子进行探讨。结果表明,青海湖高寒湿地生态系统夏季CO2通量日变化呈“U”字型,白天8:00—20:00 CO2通量值为负,其他时间为正,最低值出现在12:30,为-15.34 μmol·m-2·s-1。CO2通量日平均值为-3.65 μmol·m-2·s-1(约-13.87 g·m-2·d-1),表现为明显的CO2吸收,是重要的碳汇。CO2通量与净辐射、气温和表层土壤温度的相关性分析表明,净辐射是影响青海湖高寒湿地生态系统夏季CO2通量日变化的主要因子,气温次之,表层土壤温度对CO2通量的影响最小。采用多元回归分析得出CO2通量与各个影响因子之间的关系符合三元一次线性回归方程,R2=0.689,且达到极显著水平(P〈0.01)。  相似文献   

8.
It is commonly acknowledged that ecosystem responses to global climate change are nonlinear. However, patterns of the nonlinearity have not been well characterized on ecosystem carbon and water processes. We used a terrestrial ecosystem (TECO) model to examine nonlinear patterns of ecosystem responses to changes in temperature, CO2, and precipitation individually or in combination. The TECO model was calibrated against experimental data obtained from a grassland ecosystem in the central United States and ran for 100 years with gradual change at 252 different scenarios. We primarily used the 100th-year results to explore nonlinearity of ecosystem responses. Variables examined in this study are net primary production (NPP), heterotrophic respiration (R(h)), net ecosystem carbon exchange (NEE), runoff, and evapotranspiration (ET). Our modeling results show that nonlinear patterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, and precipitation anomalies, respectively, for NPP, NEE, and R(h). Runoff and ET exhibited threshold-like pattern in response to both temperature and precipitation anomalies but were less sensitive to CO2 changes. Ecosystem responses to combined temperature, CO2, and precipitation anomalies differed considerably from the responses to individual factors in terms of response patterns and/or critical points of nonlinearity. Our results suggest that nonlinear patterns in response to multiple global-change factors were diverse and were considerably affected by combined climate anomalies on ecosystem carbon and water processes. The diverse response patterns in nonlinearity have profound implications for both experimental design and theoretical development.  相似文献   

9.
Net ecosystem CO2 exchange (NEE) is typically measured directly by eddy covariance towers or is estimated by ecosystem process models, yet comparisons between the data obtained by these two methods can show poor correspondence. There are three potential explanations for this discrepancy. First, estimates of NEE as measured by the eddy-covariance technique are laden with uncertainty and can potentially provide a poor baseline for models to be tested against. Second, there could be fundamental problems in model structure that prevent an accurate simulation of NEE. Third, ecosystem process models are dependent on ecophysiological parameter sets derived from field measurements in which a single parameter for a given species can vary considerably. The latter problem suggests that with such broad variation among multiple inputs, any ecosystem modeling scheme must account for the possibility that many combinations of apparently feasible parameter values might not allow the model to emulate the observed NEE dynamics of a terrestrial ecosystem, as well as the possibility that there may be many parameter sets within a particular model structure that can successfully reproduce the observed data. We examined the extent to which these three issues influence estimates of NEE in a widely used ecosystem process model, Biome-BGC, by adapting the generalized likelihood uncertainty estimation (GLUE) methodology. This procedure involved 400,000 model runs, each with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in estimates of NEE that were compared to daily NEE data from young and mature Ponderosa pine stands at Metolius, Oregon. Of the 400,000 simulations run with different parameter sets for each age class (800,000 total), over 99% of the simulations underestimated the magnitude of net ecosystem CO2 exchange, with only 4.07% and 0.045% of all simulations providing satisfactory simulations of the field data for the young and mature stands, even when uncertainties in eddy-covariance measurements are accounted for. Results indicate fundamental shortcomings in the ability of this model to produce realistic carbon flux data over the course of forest development, and we suspect that much of the mismatch derives from an inability to realistically model ecosystem respiration. However, difficulties in estimating historic climate data are also a cause for model-data mismatch, particularly in a highly ecotonal region such as central Oregon. This latter difficulty may be less prevalent in other ecosystems, but it nonetheless highlights a challenge in trying to develop a dynamic representation of the terrestrial biosphere.  相似文献   

10.
In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated in the upper part of the canopy. These results can be useful both for interpretation of existing measurements of net ecosystem exchange of CO2 (NEE) from flux towers in limited fetch conditions and in planning future CO2 transport experiments.  相似文献   

11.
This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal was to investigate the potential for using nocturnal down-valley winds (cold air drainage) for monitoring ecosystem processes in mountainous terrain from two perspectives: measurements of the isotopic composition of ecosystem-respired CO2 (delta13C(ER)) and estimates of fluxes of CO2 transported in the drainage flow. To test if this approach is plausible, we monitored the wind patterns, CO2 concentrations, and the carbon isotopic composition of the air as it exited the base of a young (approximately 40 yr-old) and an old (>450 yr-old) steeply sided Douglas-fir watershed. Nocturnal cold air drainage within these watersheds was strong, deep, and occurred on more than 80% of summer nights. The depth of cold air drainage rapidly increased to tower height or greater when the net radiation at the top of the tower approached zero. The carbon isotope composition of CO2 in the drainage system holds promise as an indicator of variation in basin-scale physiological processes. Although there was little vertical variation in CO2 concentration at any point in time, we found that the range of CO2 concentration over a single evening was sufficient to estimate delta 13C(ER) from Keeling plot analyses. The seasonal variation in delta 13C(ER) followed expected trends: during the summer dry season delta 13C(ER) became less negative (more enriched in 13C), but once rain returned in the fall, delta 13C(ER) decreased. However, we found no correlation between recent weather (e.g., vapor pressure deficit) and delta 13C(ER) either concurrently or with up to a one-week lag. Preliminary estimates suggest that the nocturnal CO2 flux advecting past the 28-m tower is a rather small fraction (<20%) of the watershed-scale respiration. This study demonstrates that monitoring the isotopic composition and CO2 concentration of cold air drainage at the base of a watershed provides a new tool for quantifying ecosystem metabolism in mountainous ecosystems on the basin scale.  相似文献   

12.
控制亚热带山地泥炭藓湿地中维管植物的生长可以帮助泥炭藓湿地快速恢复.以亚热带山地大泥炭藓(Sphagnum palustre L.)为研究对象,采用人工覆盖遮光网控制遮光率,探究遮光对大泥炭藓生长及维管植物控制效果的影响.结果显示:(1)大泥炭藓的生长状态方面,在无遮光下及遮光处理下,随着遮光率的增加,大泥炭藓的头状枝...  相似文献   

13.
Experimentally increasing atmospheric CO2 often stimulates plant growth and ecosystem carbon (C) uptake. Biogeochemical theory predicts that these initial responses will immobilize nitrogen (N) in plant biomass and soil organic matter, causing N availability to plants to decline, and reducing the long-term CO2-stimulation of C storage in N limited ecosystems. While many experiments have examined changes in N cycling in response to elevated CO2, empirical tests of this theoretical prediction are scarce. During seven years of postfire recovery in a scrub oak ecosystem, elevated CO2 initially increased plant N accumulation and plant uptake of tracer 15N, peaking after four years of CO2 enrichment. Between years four and seven, these responses to CO2 declined. Elevated CO2 also increased N and tracer 15N accumulation in the O horizon, and reduced 15N recovery in underlying mineral soil. These responses are consistent with progressive N limitation: the initial CO2 stimulation of plant growth immobilized N in plant biomass and in the O horizon, progressively reducing N availability to plants. Litterfall production (one measure of aboveground primary productivity) increased initially in response to elevated CO2, but the CO2 stimulation declined during years five through seven, concurrent with the accumulation of N in the O horizon and the apparent restriction of plant N availability. Yet, at the level of aboveground plant biomass (estimated by allometry), progressive N limitation was less apparent, initially because of increased N acquisition from soil and later because of reduced N concentration in biomass as N availability declined. Over this seven-year period, elevated CO2 caused a redistribution of N within the ecosystem, from mineral soils, to plants, to surface organic matter. In N limited ecosystems, such changes in N cycling are likely to reduce the response of plant production to elevated CO2.  相似文献   

14.
Environmental conditions act above and below ground, and regulate carbon fluxes and evapotranspiration. The productivity of boreal forest ecosystems is strongly governed by low temperature and moisture conditions, but the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In order to quantify the seasonal responses of vegetation to environmental factors, the seasonality of carbon and heat fluxes and the corresponding responses for temperature and moisture in air and soil were simulated by merging a process-based model (CoupModel) with detailed measurements representing various components of a forest ecosystem in Hyytiälä, southern Finland. The uncertainties in parameters, model assumptions, and measurements were identified by generalized likelihood uncertainty estimation (GLUE). Seasonal and diurnal courses of sensible and latent heat fluxes and net ecosystem exchange (NEE) of CO2 were successfully simulated for two contrasting years. Moreover, systematic increases in efficiency of photosynthesis, water uptake, and decomposition occurred from spring to summer, demonstrating the strong coupling between processes. Evapotranspiration and NEE flux both showed a strong response to soil temperature conditions via different direct and indirect ecosystem mechanisms. The rate of photosynthesis was strongly correlated with the corresponding water uptake response and the light use efficiency. With the present data and model assumptions, it was not possible to precisely distinguish the various regulating ecosystem mechanisms. Our approach proved robust for modeling the seasonal course of carbon fluxes and evapotranspiration by combining different independent measurements. It will be highly interesting to continue using long-term series data and to make additional tests of optional stomatal conductance models in order to improve our understanding of the boreal forest ecosystem in response to climate variability and environmental conditions.  相似文献   

15.
Present study was undertaken as an attempt to study the effect of pollutants on biological responses of Sphagnum growing at Kainchi, Kumaon hills (Uttranchal). Sphagnum plants of almost identical size, collected from the marked sites of Kainchi in different seasons viz., monsoon, winter, summer and again in monsoon, were analysed for chlorophyll, protein, shoot length and nitrate reductase and peroxidase activities. Maximum chlorophyll, protein, shoots length and nitrate reductase activities were observed during the monsoon while minimum in summers. The abundance of Sphagnum and two other bryophytes, Marchantia and Plagiochasma was also higher in monsoon than in other seasons. The study also indicated that Sphagnum has more bioaccumulation and tolerance potential for heavy metals than Marchantia and Plagiochasma.  相似文献   

16.
湿地生态系统碳循环是陆地碳循环研究中的重要组成部分,对于全球变化具有重要意义。水汽通量是影响湿地生态系统碳循环最重要、最基本的生态因子之一,与湿地生态系统CO2净交换密切相关。本文在总结湿地生态系统CO2净交换与水汽通量变化基本规律及其主要影响因子的基础上,从宏观和微观2个方面分析二者之间的内在关系。从宏观上看,湿地生态系统本身的特点决定了CO2净交换与水汽通量之间必然是相互影响、相互制约的;就微观而言,叶片尺度上的气孔行为是水分蒸腾和净碳通量这两个生理生态过程相互联系的纽带。最后,对湿地生态系统CO2净交换与水汽通量关系的研究方向提出展望。  相似文献   

17.
This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of process-based approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.  相似文献   

18.
The net photosynthesis of intertidal, subtidal, carposporic, tetrasporic, and winter versus summer acclimatized plants of Chondrus crispus Stackhouse were evaluated under different temperatures and quantities of light. The optimum temperature and light conditions for net photosynthesis of C. crispus are seasonally and spatially variable, and there is an adaptive shift in the photosynthetic capacity at different seasons and positions on the shore. Plants collected during the fall and winter had lower light optima (465 to 747 ft-c) for net photosynthesis than spring and summer specimens (about 1000 ft-c). Intertidal populations exhibited a higher rate of net photosynthesis between 250 and 2819 ft-c than subtidal plants. Summer materials have a greater tolerance to high temperatures and a higher temperature optimum than winter materials. Shallow subtidal populations (-6m) exhibited a higher temperature optimum than deep subtidal plants (-12m). Tetrasporic plants (diploid) showed a higher rate of net photosynthesis than carposporic plants (haploid). It is suggested that the diploid plants of C. crispus may extend deeper in the subtidal zone, because they have a higher rate of net photosynthesis than carposporic plants. The results of the present studies are compared with previous physiological studies of C. crispus.Published with the approval of the Director of the New Hampshire Agriculture Experiment Station as Scientific Contribution Number 742.  相似文献   

19.
Norby RJ  Iversen CM 《Ecology》2006,87(1):5-14
The Progressive Nitrogen Limitation (PNL) hypothesis suggests that ecosystems in a CO2-enriched atmosphere will sequester C and N in long-lived biomass and soil organic pools, thereby limiting available N and constraining the continued response of net primary productivity to elevated [CO2]. Here, we present a six-year record of N dynamics of a sweetgum (Liquidambar styraciflua) stand exposed to elevated [CO2] in the free-air CO2 enrichment (FACE) experiment at Oak Ridge, Tennessee, USA. We also evaluate the concept of PNL for this ecosystem from the perspective of N uptake, content, distribution, and turnover, and N-use efficiency. Leaf N content was 11% lower on a leaf mass basis (NM) and 7% lower on a leaf area basis (NA) in CO2-enriched trees. However, there was no effect of [CO2] on total canopy N content. Resorption of N during senescence was not altered by [CO2], so NM of litter, but not total N content, was reduced. The NM of fine roots was not affected, but the total amount of N required for fine-root production increased significantly, reflecting the large stimulation of fine-root production in this stand. Hence, total N requirement of the trees was higher in elevated [CO2], and the increased requirement was met through an increase in N uptake rather than increased retranslocation of stored reserves. Increased N uptake was correlated with increased net primary productivity (NPP). N-use efficiency, however, did not change with CO2 enrichment because increased N productivity was offset by lower mean residence time of N in the trees. None of the measured responses of plant N dynamics in this ecosystem indicated the occurrence of PNL, and the stimulation of NPP by elevated [CO2] was sustained for the first six years of the experiment. Although there are some indications of developing changes in the N economy, the N supply in the soil at this site may be sufficient to meet an increasing demand for available N, especially as the roots of CO2-enriched trees explore deeper in the soil profile.  相似文献   

20.
The North Inlet Marsh-Estuarine System Model (NIMES) is a 19-compartment real-time deterministic ecosystem simulation model of intrasystem carbon flow and exchange between an estuary and adjacent coastal water. A complete sensitivity analysis of this model with regard to POM, DOM and nekton annual exchange and annual system net productivity was completed and the functional relationship between these system behaviors and the perturbed parameters were determined by regression techniques. Simulated POM annual exchange between the estuary and the sea was largely controlled by offshore POM concentration, water column respiration and the gross productivity of the marsh and water column flora. Simulated DOM annual estuarine-oceanic exchange was most sensitive to perturbations in the gross productivity and biomass changes in marsh flora and water column microbial DOM uptake. Simulated nekton exchange reflected a sensitivity to migratory behavior and subtidal benthic biomass changes. System annual net productivity as simulated by the model showed a high sensitivity to all model processes which affected component primary production and respiration. From this sensitivity analysis, a scheme is developed to evaluate research needs for further model development for the North Inlet ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号