首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
罗晓  岳琳  洪纲  刘艳芳 《化工环保》2014,34(1):37-40
采用转鼓铁碳微电解法预处理液晶生产废水,优化了工艺参数,并进行了装置连续运行试验。结果表明:保持转鼓转速2 r/min,在废水pH=2.0、铁碳比(m(铸铁屑)∶m(活性炭))1∶1.5、填料装填率(填料体积与反应器有效容积之比)1∶10、HRT=3 h的优化工艺条件下,废水BOD5/COD由处理前的0.181提高到0.265;电解装置连续运行30 d,COD去除率稳定在40.1%~43.2%之间,且填料未出现板结现象。  相似文献   

2.
短程硝化-铁炭微电解工艺处理焦化废水   总被引:7,自引:2,他引:5  
以废刚玉石墨粉末和废铁屑作为电极,分别采用铁炭微电解工艺和短程硝化一铁炭微电解工艺对焦化废水进行脱氮处理。实验结果表明,采用短程硝化一铁炭微电解工艺对焦化废水脱氮效果好于只采用铁炭微电解工艺。铁炭微电解的最佳反应条件:废水初始pH为3.0,反应时间为70min,铁炭质量比[m(Fe):m(C)]为1.0:1.3,混凝pH为9.0。在此最佳反应条件下,铁炭微电解工艺TN去除率为8.0%,短程硝化一铁炭微电解工艺NO2--N的去除率为57.0%,TN的去除率为50.0%。  相似文献   

3.
有机离子载入-复焙烧失法制备新型净水材料   总被引:3,自引:1,他引:2  
探索了一种制备介孔复合净水材料的新方法——载入有机离子一复焙烧失法。通过实验得到的最佳工艺参数为:有机载入剂为CTMAB,有机载入剂(质量浓度5g/L)加入量4mL/g,有机离子交换反应时间2h,反应温度40℃,复焙烧失温度230℃,复焙烧失时间1.5h。在最佳工艺条件下制备的净水材料对色度为7400倍、COD为3040mg/L的染料废水的脱色率为98.9%,略优于杏壳活性炭的脱色率(98.2%);COD去除率为91.3%,与杏壳活性炭的COD去除率91.7%相差无几。净水材料的染料吸附量是添加剂升温烧蚀后产品的近85倍,是酸洗刻蚀后产品的近590倍,是原材料的900多倍,其对染料废水的净化能力整体优于杏壳活性炭。  相似文献   

4.
制备了锰粉改进的规整化微电解填料,采用电化学辅助改进微电解填料处理初始COD为6 153.6 mg/L、ρ(NH_3-N)为182.6 mg/L的焦化废水,优化了工艺条件。实验结果表明,电化学辅助微电解法处理焦化废水的最佳工艺条件为电压8 V,填料投加量20 g/L,初始废水pH 6,反应时间30 min。在此条件下废水COD去除率为75.3%,NH_3-N去除率为65.4%;在其他工艺条件相同的情况下,未通过电化学辅助的填料微电解反应的COD去除率为33.0%,NH_3-N去除率为16.2%,电化学辅助后的COD去除率和NH_3-N去除率均明显提高。  相似文献   

5.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

6.
采用铁屑流化床预处理、负载活性炭催化剂催化氧化和混凝沉淀组合工艺处理有机硅废水。废水经铁屑流化床预处理后Cu^2+的去除率达99.90%,COD去除率达23.9%;负载活性炭催化剂催化氧化的最佳工艺条件:催化剂质量浓度为0.5g/L,H202质量浓度为2400mg/L,不投加FeSO4,反应时间为60min,体系pH为3-4,COD去除率达82%。催化氧化后的废水经混凝沉淀处理,调节pn为8-9,可达标排放。  相似文献   

7.
采用转鼓铁碳微电解法预处理液晶生产废水,优化了工艺参数,并进行了装置连续运行试验。结果表明:保持转鼓转速2 r/min,在废水pH=2.0、铁碳比(m(铸铁屑)∶m(活性炭))1∶1.5、填料装填率(填料体积与反应器有效容积之比)1∶10、HRT=3 h的优化工艺条件下,废水BOD5/COD由处理前的0.181提高到0.265;电解装置连续运行30 d,COD去除率稳定在40.1%~43.2%之间,且填料未出现板结现象。  相似文献   

8.
铁屑微电解——共沉淀法处理含钒废水   总被引:16,自引:1,他引:16  
采用铁屑微电解--共沉淀法处理含钒废水。介绍了其试验原理,考察了废水PH,铁屑用量,反应时间和废水的钒浓度等因素对钒去除率的影响,试验结果表明,在废水PH为2.5,铁屑用量为12.5%,常温,反应温为90 min的条件下,钒的去除率可达97%以上。  相似文献   

9.
为了降低松香改性酚醛树脂生产废水的COD并改善其可生化性,采用微电解—芬顿氧化工艺对该废水进行预处理。研究了pH、微电解反应时间、曝气、双氧水投加量等对微电解和芬顿氧化处理效果的影响,考察了COD去除率和BOD5/COD值的变化趋势。实验结果表明:曝气条件下,调节废水pH为4、进行2次微电解、微电解反应时间各2.0 h时,废水的COD去除率为38%,BOD5/COD值提高为0.18;再投加7.5%(w)的双氧水,废水的COD去除率为65.3%,BOD5/COD值为0.37。采用微电解—芬顿氧化的预处理工艺,不仅有效去除了废水的COD,而且显著改善了废水的可生化性。  相似文献   

10.
铁屑微电解法深度处理油田钻井污水   总被引:6,自引:1,他引:6  
采用化学混凝-铁屑微电解法深度处理钻井污水。确定了最佳工艺条件:铁屑与活性炭的质量比为0.5,反应时间为2h,污水pH为1.0,温度为常温,反应后用石灰乳调节污水pH至12。处理后钻井污水COD可由原水的8065mg/L降至430mg/L,COD去除率大于94%,色度去除率达100%,达到国家综合污水三级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号