首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: The effect of stream restoration on hyporheic functions has been neglected, although channel rehabilitation projects have a potential to alter stream‐ground‐water interactions. The present study examined the effect of an artificially constructed gravel bar and re‐meandered stream channel on lateral hyporheic exchange flow and chemistry in two lowland N‐rich streams in southern Ontario, Canada. Nitrate concentrations were relatively high, ranging from 0.5 to 1.3 mg N/l in both streams during spring through fall months. However, nitrate concentrations showed a steep decline as stream water entered the gravel bar and the meander bends. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that 40‐100 and 68‐98% of the nitrate entering the hyporheic zone was removed in the gravel bar and meanders, respectively. Rapid depletion of dissolved oxygen concentrations along lateral hyporheic flow paths and denitrifying potentials assayed by the acetylene block technique in hyporheic sediments suggests that denitrification was an important mechanism of nitrate depletion. Despite the high rate of nitrate removal, the flux of stream water laterally entering the constructed gravel bar and meander bends was very small, and hyporheic nitrate removal was <0.015% of the daily stream load during base‐flow periods in summer and fall. The effects of restoration projects on hyporheic zone dynamics are often limited in lowland streams by low channel gradients and fine floodplain sediments with low interstitial flows that restrict the magnitude of the stream‐hyporheic connection.  相似文献   

2.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   

3.
ABSTRACT: Armored stream segments may affect the suspended sediment regime of small mountain streams in western Oregon by the release of fine sediments stored in the bed gravels. Sieve analysis of bed materials indicated that at least 30 percent of the suspended sediment yield for the 1975–76 winter had been stored in the streambed. Suspended sediment concentrations during storm-generated runoff were influenced by stream discharge and hydrograph characteristics. Sediment-discharge relations for individual storms were characterized by hysteresis loops. A seasonal flushing of fines was shown by a progressive decrease in the ratio of suspended sediment to stream discharge during the winter runoff period.  相似文献   

4.
Recent works have indicated that climate change in the northeastern United States is already being observed in the form of shorter winters, higher annual average air temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on aquatic ecosystems, and the implications of such changes are less understood. The objective of this study was to examine how future changes in precipitation and temperature translate into changes in streamflow using a physically based semidistributed model, and subsequently how changes in streamflow could potentially impact stream ecology. Streamflow parameters were examined in a New York City water supply watershed for changes from model‐simulated baseline conditions to future climate scenarios (2081‐2100) for ecologically relevant factors of streamflow using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt and reduced snowpack advance the timing and increase the magnitude of discharge in the winter and early spring (November‐March) and greatly decrease monthly streamflow later in the spring in April. Both the rise and fall rates of the hydrograph will increase resulting in increased flashiness and flow reversals primarily due to increased pulses during winter seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and changes in the magnitudes of low flow can all influence aquatic organisms and have the potential to impact stream ecology.  相似文献   

5.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   

6.
ABSTRACT: During waning flood flows in gravel-bed streams, finegrained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes available to fill pools. The volume of fine sediment in pools can be measured by probing with a metal rod, and, when expressed as the fraction (V*) of scoured residual pooi volume (residual pool volume with fine sediment removed), can be used as an index of the supply of mobile sediment in a stream channel. Mean values of V* were as high as 0.5 and correlated with qualitative evaluations of sediment supply in eight tributaries of the Trinity River, northwestern California. Fine-sediment volume correlated strongly with scoured pool volume in individual channels, but plots of V* versus pool volume and water surface slope revealed secondary variations in fines volume. In sediment-rich channels, V* correlated positively with scoured pool volume; in sediment-poor channels, V* correlated negatively with water-surface slope. Measuring fine sediment in pools can be a practical method to evaluate and monitor the supply of mobile sediment in gravel-bed streams and to detect and evaluate sediment inputs along a channel network.  相似文献   

7.
Abstract: Streambank erosion by mass‐failure processes represents an important form of channel adjustment and a significant source of sediment in disturbed streams. Mass failures regularly occur by a combination of hydraulic processes that undercut bank toes and geotechnical processes that cause bank collapse by gravity. Little if any quantitative information is available on the effectiveness of bank treatments on reducing erosion. To evaluate potential reduction in sediment loadings emanating from streambanks, the hydraulic and geotechnical processes responsible for mass failure were simulated under existing and mitigated conditions using a Bank‐Stability and Toe‐Erosion Model (BSTEM). Two critical erosion sites were selected from each of the three watersheds known to contribute the greatest amounts of fine sediment by streambank processes in the Lake Tahoe Basin. A typical high‐flow annual hydrograph was selected for analysis. Bank‐material strength data were collected for each layer as were species‐specific root‐reinforcement values. The effects of the first flow event on bank‐toe erosion were simulated using an excess shear‐stress approach. The resulting geometry was then exported into the bank‐stability submodel to test for the relative stability of the bank under peak flow and drawdown conditions. In this way, BSTEM was used iteratively for all flow events for both existing and mitigated conditions. On average, 13.6% of the material was eroded by hydraulic shear, the remainder by mass failures, which occurred about five times over the simulation period. Simulations with 1.0 m‐high rock‐toe protection showed a dramatic reduction in streambank erosion (69‐100%). Failure frequency for the simulation period was reduced in most cases to a single episode. Thus, an almost 90% reduction in streambank loadings was achieved by virtually eliminating the erosion of only 14% of the material that was entrained by hydraulic forces. Consequently, simulations show average load reductions of about an order of magnitude. Results stress the critical importance of protecting the bank toe‐region from steepening by hydraulic forces that would otherwise entrain previously failed and in situ bank materials, thereby allowing the upper bank to flatten (by failure) to a stable slope.  相似文献   

8.
ABSTRACT: The pebble count, a quick and simple technique for characterizing streambed materials, has long been used by geomorphologists, hydrologists, and river engineers. This paper describes how pebble counts have been used to monitor fine sediment (particles less then 6 mm in size) on the Boise National Forest. Data from two watersheds subjected to major wildfires and the failure of a dam are discussed. Following wildfires, pebble count data showed increases in streambed fines followed by improvement of the stream substrate with time as the watersheds recovered. For the dam failure, pebble count data showed an increase in fines in the stream below the failure and were used to track the distance of sediment movement downstream. Pebble counts may be best used where fine sediment on channel substrates are a concern, such as in granitic watersheds where coarse sands are a large component of bedload and land-disturbing activities introduce fine sediment into streams. Pebble counts are found to be a simple and rapid monitoring method that can be used to help determine whether or not land management activities or land disturbances are introducing fine sediment into streams.  相似文献   

9.
ABSTRACT: Two modifications to automated pumping samplers improve discrete sampling during high flow events in small mountain streams. One modification entails mounting the intake nozzle on a bent, free-swinging metal rod supported in midstream. This allows sampling in midstream yet prevents the buildup of floatable organic debris that otherwise would cause the intake to fail. On the lower end of the rod, dynamic forces exerted by the stream keep the intake submerged over diverse flow conditions. The second modification consists of a magnetic switching device that automatically activates the pumping sampler at any preset stage on the rising limb of a storm hydrograph. The pumping sampler then remains on to collect one sample per hour which allows field crews sufficient time to change bottles before the sampler fills its 28-bottle capacity. This device improves the capability to sample frequently at fixed intervals, yet with minimal maintenance between runoff events. It also ensures sample collection during the rising limb of the hydrograph when flow and sediment concentrations are rapidly changing. Both modifications have improved data collection during periods of storm runoff.  相似文献   

10.
Excess fine sediments in streambeds are among the most pervasive causes of degradation in streams of the United States. Simple criteria for acceptable streambed fines are elusive because streambed fines and biotic tolerances vary widely in the absence of human disturbances. In response to the need for sediment benchmarks that are protective of minimum aquatic life uses under the Clean Water Act, we undertook a case study using surveys of sediment, physical habitat, and macroinvertebrates from New Mexico streams. Our approach uses weight of evidence to develop suggested benchmarks for protective levels of surficial bedded sediments <0.06 mm (silt and finer) and <2.0 mm (sand and finer). We grouped streams into three ecoregions that were expected to produce similar naturally occurring streambed textures and patterns of response to human disturbances. Within ecoregions, we employed stressor response models to estimate fine sediment percentages and bed stability that are tolerated by resident macroinvertebrates. We then compared individual stream sediment data with distributions among least‐disturbed reference sites to determine deviation from natural conditions, accounting for natural variability across ecoregion, gradient, and drainage area. This approach for developing benchmark values could be applied more widely to provide a solid basis for developing bedded sediment criteria and other protective management strategies in other regions.  相似文献   

11.
Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.  相似文献   

12.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   

13.
Effects of placer mining on the hydrology and water quality of several interior Alaska streams were studied as part of a project on the impacts of placer mining on stream ecosystems. Surface and subsurface waters were analyzed in the field for conductivity, pH, temperature, alkalinity, total and calcium hardnesses, iron, copper, manganese, ammonia-N, nitrate-N, nitrite-N, settleable solids, and turbidity. Total, nonfiltrable, and filtrable residues were determined in the laboratory. In the streams placer mining increased turbidity, settleable solids, nonfiltrable and filtrable residues and total iron. Surface and subsurface water levels, as measured in wells driven in the stream beds, were correlated with stream flow. Fine sediment deposited on stream beds in mined drainages reduced the hydraulic contact between the surface and subsurface waters of the stream and caused the piezometric water level to be below the surface water level of the mined streams. This resulted in higher specific conductance and significantly lower dissolved oxygen concentrations in the subsurface waters of mined streams compared to their surface waters. No significant differences were found for any water quality characteristics comparing surface to subsurface waters for the unmined streams.  相似文献   

14.
Abstract: Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine‐grained sediments emanating from upland and channel sources. The overall objective of the research reported here was to determine the amount of fine sediment delivered to Lake Tahoe from each of the 63 contributing watersheds. The research described in this report used combinations of field‐based observations of channel and bank stability with measured and simulated data on fine‐sediment loadings to estimate fine‐sediment loadings from unmonitored basins throughout the Lake Tahoe Basin. Loadings were expressed in the conventional format of mass per unit time but also in the number of particles finer than 20 μm, the latter for future use in a lake‐clarity model. The greatest contributors of fine sediment happened to be those with measured data, not requiring extrapolation. In descending order, they are as follows: Upper Truckee River [1,010 tonnes per year (T/year)], Blackwood Creek (846 T/year), Trout Creek (462 T/year), and Ward Creek (412 T/year). Summing estimated values from the contributing watersheds provided an average, annual estimate of fine‐sediment (<0.063 mm) loadings to the lake of 5,206 T/year. A total of 7.79E + 19 particles in the 5‐20 μm fraction were calculated to enter Lake Tahoe in an average year with the Upper Truckee River accounting for almost 25% of the total. Contributions from Blackwood, Ward, Trout, and Third creeks account for another 23% of these very fine particles. Thus, these five streams making up about 40% of the basin area, account for almost 50% of all fine‐sediment loadings to the lake. Contribution of fine sediment from streambank erosion were estimated by developing empirical relations between measured or simulated bank‐erosion rates with a field‐based measure of the extent of bank instability along given streams. An average, annual fine‐sediment loading from streambank erosion of 1,305 T/year was calculated. This represents about 25% of the average, annual fine‐sediment load delivered to the lake from all sources. The two largest contributors, the Upper Truckee River (639 T/year) and Blackwood Creek (431 T/year), account for slightly more than 80% of all fines emanating from streambanks, representing about 20% of the fine sediment delivered to Lake Tahoe from all sources. Extrapolations of fine‐sediment loadings to the unmonitored watersheds are based on documented empirical relations, yet contain a significant amount of uncertainty. Except for those values derived directly from measured data, reported results should be considered as estimates.  相似文献   

15.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual.  相似文献   

16.
In this laboratory study different combinations of bed (sand, pebble gravel [gravel], and a mix of sand and gravel) and flow (typical and overtopping) were experimented with to investigate the impact of porous deflectors in flow diversity, water quality, and fish performance in prismatic open channels. Deflectors changed the gradually varied flow to a rapidly varied flow, as a sudden change in the water depth was observed at the deflectors, and this change was large for smooth beds. With the presence of gravel, the scouring near the downstream deflector was almost twice that of the sand bed, and with the scouring at its own upstream deflector, irrespective of whether the flow was typical or overtopping. This behavior was a result of sand mobilization due to shear stress and sand mobilization aided gravel transport. The mixed bed showed less gravel movement compared to the gravel-only bed. The percentage of sediment washed out was minor for all bed scenarios, indicating that sediment transport was local. Relative to the sand bed without deflectors (representing a typical urban canal), deflectors resulted in reduced and improved water quality (in terms of sediment load) for sand, and mixed bed, respectively. The fishes found refuge and were comfortable in the pool areas created by deflectors unlike in channels without deflectors where they showed exhaustion.  相似文献   

17.
ABSTRACT: The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50‐year simulation, Wells Creek, a third‐order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourth‐order warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/1. We estimated that 46 mg/1 would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/1 may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied.  相似文献   

18.
Recent studies indicate fecal coliform bacterial concentrations, including Escherichia coli (E. coli), characteristically vary by several orders of magnitude, depending on the hydrology of storm recharge and discharge. E. coli concentrations in spring water increase rapidly during the rising limb of a storm hydrograph, peak prior to or coincident with the peak of the storm pulse, and decline rapidly, well before the recession of the storm hydrograph. This suggests E. coli are associated with resuspension of sediment during the onset of turbulent flow, and indicates viable bacteria reside within the spring and stream sediments. E. coli inoculated chambers were placed in spring and stream environments within the mantled karst of northwest Arkansas to assess long term (> 75 days) E. coli viability. During the 75‐day study, a 4‐log die‐off of E. coli was observed for chambers placed in the Illinois River, and a 5‐log die‐off for chambers placed in Copperhead Spring. Extrapolation of the regression line for each environment indicates E. coli concentration would reach 1 most probable number (MPN)/100 g sediment at Copperhead Spring in about 105 days, and about 135 days in the Illinois River, based on a starting inoculation of 2.5 × 107 MPN E. coli/100 g of sediment. These in situ observations indicate it is possible for E. coli to survive in these environments for at least four months with no fresh external inputs.  相似文献   

19.
20.
Flushing flows are re1eses from dams designed to remove fine sediment from downstream spawning habitat. We evaluated flushing flows on reaches proposed for hydroelectric diversions on seven streams in the eastern Sierra Nevada, California, with wild populations of brown trout (Salmo trutta). The stream reaches are steep (average map slopes range from 7 to 17 percent), are dominated by boulder cascades, and afford few opportunities for gravel deposition. Methods for estimating flushing flows from flow records, developed from studies in other localities, produced widely differing results when applied to the study streams, probably reflecting differences in the hydrologic and geomorphic characteristics of the streams on which the methods were developed. Tracer gravel experiments demonstrated that all sampled gravels were washed out by the flows of 1986, a wet year. Size analyses of gravel samples and hydraulic data from field surveys were used in tractive-force calculations in an attempt to specify the flow required to flush the gravels. However, these calculations produced some unrealistic results because the flows were nonuniform in the study reaches. This suggests that the tractive-force approach may not be generally applicable to small, steep streams where nonuniform flow conditions prevail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号