首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The tapered element oscillating microbalance (TEOM) is one type of continuous ambient particulate matter (PM) monitor. Adsorption and desorption of moisture and semivolatile species may cause positive or negative artifacts in TEOM PM mass measurement. The objective of this field study was to investigate possible uncertainties associated with TEOM measurements in the poultry operation environment. For comparisons of TEOM with filter-based gravimetric method, four instruments (TEOM-PM10, low-volume PM10 sampler TEOM-PM2.5, and PM2.5 speciation sampler) were collocated and tested inside a poultry house for PM2.5 and PM10 (PM with aerodynamic equivalent diameter < or =2.5 and < or =10 microm, respectively) measurements. Fifteen sets of 24-hr PM10 concentrations and 13 sets of 24-hr PM2.5 measurements were obtained. Results indicate that compared with filter-based gravimetric method, TEOM gave significantly lower values of both PM10 and PM2.5 mass concentrations. For PM10, the average ratio of TEOM to the gravimetric method was 0.936. For PM2.5, the average ratio of TEOM to the gravimetric method was 0.738. Particulate matter in the poultry houses possibly contains semivolatile compounds and moisture due to high levels of relative humidity (RH) and gas pollutants. The internal heating mechanism of the TEOM may cause losses in mass through volatilization. To investigate the effects of TEOM settings on concentration measurements, the heaters of two identical TEOMs were set at 50 degrees C, 30 degrees C, or no heating at all. They were collocated and tested for total suspended particle (TSP), PM10, and PM25 measurements in layer house for 6 weeks. For all TSR PM10, and PM2.5 measurements, the internal TEOM temperature setting had a significant effect (P < 0.05). Significantly higher PM mass concentrations were measured at lower temperature settings. The effects of environmental (i.e., temperature, RH, NH3 and CO2 concentrations) and instrumental (i.e., filter loading and noise) parameters on PM measurements were also assessed using regression analysis.  相似文献   

2.
A new real-time dust mass monitor has been developed by combining an automatic isokinetic sampling probe with a tapered element oscillating microbalance (TEOM). Fly ash from a room temperature wind tunnel is sampled through the isokinetic sampler and collected on an astroquartz mat filter in the TEOM detector. The filter is first excited and oscillated at low frequency (about 200 Hz). As the particles deposit on the filter, the mass increase of the filter is reflected in a frequency reduction which yields the collected particle mass directly in real time. The TEOM detector normally has a high mass resolution (10?9 g) and wide dynamic range (1055–1066). It is desensitized for high particle loading applications. Good agreement has been obtained between the mass collected through the isokinetic sampling system and the weight loss of the dust feeder, in real time. The body of information presented in this paper is directed to those concerned with particle emission and control in fossil fuel combustion systems.  相似文献   

3.
Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.  相似文献   

4.
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.  相似文献   

5.
Fine particulate matter (PM2.5) mass was determined on a continuous basis at the Salt Lake City Environmental Protection Agency Environmental Monitoring for Public Awareness and Community Tracking monitoring site in Salt Lake City, UT, using three different monitoring techniques. Hourly averaged PM2.5 mass data were collected during two sampling periods (summer 2000 and winter 2002) using a real-time total ambient mass sampler (RAMS), sample equilibration system (SES)-tapered element oscillating microbalance (TEOM), and conventional TEOM monitor. This paper compares the results obtained from the various monitoring systems, which differ in their treatment of semivolatile material (SVM; particle-bound water, semivolatile ammonium nitrate, and semivolatile organic compounds). PM2.5 mass results obtained by the RAMS were consistently higher than those obtained by the SES-TEOM and conventional TEOM monitors because of the RAMS ability to measure semivolatile ammonium nitrate and semivolatile organic material but not particle-bound water. The SES-TEOM monitoring system was able to account for an average of 28% of the SVM, whereas the conventional TEOM monitor loses essentially all of the SVM from the single filter during sampling. Occasional mass readings by the various TEOM monitors that are higher than RAMS results may reflect particle-bound water, which, under some conditions, is measured by the TEOM but not the RAMS.  相似文献   

6.
The samples of total suspended particle (TSP) from sources and TSP in the ambient atmosphere were collected in 2006 at Tianjin, People's Republic of China and analyzed for 16 chemical elements, two water-soluble ions, total carbon, and organic carbon. On the basis of the chemical mass balance (CMB) model, the contributions of different TSP sources to the ambient TSP were identified. The results showed that resuspended dust has the biggest contributions to the concentration of ambient TSP. The buffering capacity of each TSP source was also determined by an analytical chemistry method, and the result showed that the constructive dust (the dust emitted from construction work) had the strongest buffering capacity among the measured sources, whereas the coal combustion dust had the weakest buffering capacity. A calculation formula of the source of buffering capacity of ambient TSP was developed based on the result of TSP source apportionment and the identification of the buffering capacity of each TSP source in this study. The results of the source apportionment of the buffering capacity of ambient TSP indicated that open sources (including soil dust, resuspended dust, and constructive dust) were the dominant sources of the buffering capacity of the ambient TSP. Acid rain pollution in cities in Northern China might become serious with a decrease of open source pollution without reducing acidic sources. More efforts must be made to evaluate this potential risk, and countermeasures should be proposed as early as possible.  相似文献   

7.
Concentration levels of total suspended particles (TSP) and 27 major, minor and trace elemental components were determined at four sites in Kosovo through a 1-year survey (January-December 2002). Ambient concentrations were evaluated in comparison to limit values. The origin of elemental TSP constituents was investigated by calculating enrichment factors and diagnostic ratios. Multivariate statistics, such as hierarchical cluster analysis and factor analysis, were also employed to identify emission sources. A multivariate statistical receptor model (Absolute Principal Component Analysis, APCA) was applied to quantify source contributions. Soil dust, cement production, vehicular emissions, brake wear, and fuel combustion were identified as major sources with variable contributions at the four sampling sites.  相似文献   

8.
To provide a scientific basis for the selection and use of continuous monitors for exposure and/or health effects studies, and for compliance and episode measurements at strategic locations in the State of New Jersey, we evaluated the performance of seven continuous fine particulate matter (PM2.5) monitors in the present study. Gravimetric samplers, as reference methods, were collocated with realtime instruments in both laboratory and field tests. The results of intercomparison of real-time monitors showed that the two nephelometers used in this study correlated extremely well (r2 approximately 0.97), and two tapered element oscillating monitors (TEOM 1400 and TEOM filter dynamics measurement system [FDMS]) correlated well (r2 > 0.85), whereas two beta gauges displayed a weaker correlation (r2 < 0.6). During a summertime controlled (laboratory) evaluation, the measurements made with the gravimetric method correlated well with the 24-hr integrated measurements made with the real-time monitors. The SidePak nephelometer overestimated the particle concentration by a factor of approximately 3.4 compared with the gravimetric method. During a summertime field evaluation, the TEOM FDMS monitor reported approximately 30% higher mass concentration than the Federal Reference Method (FRM); and the difference could be explained by the loss of semi-volatile materials from the FRM sampler. Results also demonstrated that 24-hr average PM2.5 mass concentrations measured by beta gauges and TEOM (50 degrees C) in winter correlated well with the integrated gravimetric method. Seasonal differences were observed in the performance of the TEOM (50 degrees C) monitor in measuring the particle mass attributed to the higher semi-volatile material loss in the winter weather. In applying the realtime particulate matter monitoring data into Air Quality Index (AQI) reporting, the Conroy method and the 8-hr end-hour average method were both found to be suitable.  相似文献   

9.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

10.
This study comprehensively characterizes hourly fine particulate matter (PM(2.5)) concentrations measured via a tapered element oscillating microbalance (TEOM), beta-gauge, and nephelometer from four different monitoring sites in U.S. Environment Protection Agency (EPA) Region 5 (in U.S. states Illinois, Michigan, and Wisconsin) and compares them to the Federal Reference Method (FRM). Hourly characterization uses time series and autocorrelation. Hourly data are compared with FRM by averaging across 24-hr sampling periods and modeling against respective daily FRM concentrations. Modeling uses traditional two-variable linear least-squares regression as well as innovative nonlinear regression involving additional meteorological variables such as temperature and humidity. The TEOM shows a relationship with season and temperature, linear correlation as low as 0.7924 and nonlinear model correlation as high as 0.9370 when modeled with temperature. The beta-gauge shows no relationship with season or meteorological variables. It exhibits a linear correlation as low as 0.8505 with the FRM and a nonlinear model correlation as high as 0.9339 when modeled with humidity. The nephelometer shows no relationship with season or temperature but a strong relationship with humidity is observed. A linear correlation as low as 0.3050 and a nonlinear model correlation as high as 0.9508 is observed when modeled with humidity. Nonlinear models have higher correlation than linear models applied to the same dataset. This correlation difference is not always substantial, which may introduce a tradeoff between simplicity of model and degree of statistical association. This project shows that continuous monitor technology produces valid PM(2.5) characterization, with at least partial accounting for variations in concentration from gravimetric reference monitors once appropriate nonlinear adjustments are applied. Although only one regression technically meets new EPA National Ambient Air Quality Standards (NAAQS) Federal Equivalent Method (FEM) correlation coefficient criteria, several others are extremely close, showing optimistic potential for use of this nonlinear adjustment model in garnering EPA NAAQS FEM approval for continuous PM(2.5) sampling methods.  相似文献   

11.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

12.
We determined the usefulness of tapered element oscillating microbalances (TEOMs) for researchers and engineers involved with measuring diesel particulate mass. Two different test facilities were used for generating diesel particulates and comparing the TEOM to the commonly used U.S. Environmental Protection Agency (EPA) manual filter method. The EPA method is very labor-intensive and requires long periods of time to complete. The TEOM is an attractive approach because it has the potential to reduce the amount of time and labor required in diesel testing, as well as to provide real-time particulate-mass data that are not obtainable with the EPA method. It was found that the TEOM was a precise and easy-to-operate instrument that could measure the mass concentration (MC) of diesel particulate emissions in real time. Although the TEOM diesel particulate MC measurements were highly correlated with the manual filter measurements, the two techniques were not equivalent because the TEOM consistently reported MC results that were 20-25% lower than those obtained using the manual filter technique. In conclusion, the TEOM can be used to increase test-cell throughput and to measure transient values of diesel particulate emissions at sites performing diesel-engine testing. However, unless EPA is able to certify the TEOM as an equivalent method, it cannot replace the manual filter method for diesel certification work.  相似文献   

13.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH.  相似文献   

14.
Six years (1998–2003) of measurements of ambient air concentrations of total suspended particulate (TSP) measured at a rural background monitoring station in Tenerife (Canary Islands), the El Río station (ER, 28°08′35″N, 16°39′20″W, 500 m a.s.l.) were studied. African dust outbreaks were objectively identified using a new quantitative tool, called the African Index. This index indicates the percentage of time that an air mass remained over an African region at one of three possible height intervals of the lower troposphere. After identifying these episodes, a study of the background TSP levels at the ER station and of direct and indirect (those which cause vertical deposition of dust) African air mass intrusion impacts was performed. Taking into account both direct and indirect episodes, a total of 322 days of African dust intrusion were objectively identified (a mean of 54 episodes per year) in the period 1998–2003, some of them caused by “transition episodes” or “return African air masses”. A subjective method confirmed that 256 of these days were caused by direct impacts of African dust on the ER station. A mean TSP value of 21.6 μg m−3 was found at the station during this period. All the episodes occurred when the TSP concentration was >28.5 μg m−3. The TSP background (14 μg m−3) can be assumed to be representative of the MBL of the Eastern North Atlantic subtropical region. The highest number of dust gravitational settlement (or indirect) episodes occurs in summer, but the highest contribution of these episodes to the TSP levels is in March with a monthly mean TSP contribution of up to 30.5 μg m−3.  相似文献   

15.
A new personal PM10 sampling head has been developed by the Institute of Occupational Medicine (IOM), Edinburgh. The purpose of this study was to compare its performance in the field with the accepted fixed-location PM10 sampler, the tapered element oscillating microbalance (TEOM). The comparisons were carried out on three separate occasions during 1997 at each of two city centre locations in the UK. On each occasion two personal IOM PM10 sampling heads were located adjacent to a TEOM monitor and four successive sets of 24-h filter samples were collected. The data was compared with 24-h average TEOM concentrations, calculated as the arithmetic mean of the recorded hourly averages. There was a statistically significant linear relationship between the two types of monitor, although the concentrations from the IOM PM10 samplers were consistently higher than the TEOM data. It is therefore possible to use the regression equations presented in this paper to correct ambient PM10 concentrations measured by either method to equivalent values. Further research is needed to properly understand the reason for the difference between the TEOM and filter samplers.  相似文献   

16.
In studies of coarse particulate matter (PM10-2.5), mass concentrations are often estimated through the subtraction of PM2.5 from collocated PM10 tapered element oscillating microbalance (TEOM) measurements. Though all field instruments have yet to be updated, the Filter Dynamic Measurement System (FDMS) was introduced to account for the loss of semivolatile material from heated TEOM filters. To assess errors in PM10-2.5 estimation when using the possible combinations of PM10 and PM2.5 TEOM units with and without FDMS, data from three monitoring sites of the Colorado Coarse Rural–Urban Sources and Health (CCRUSH) study were used to simulate four possible subtraction methods for estimating PM10-2.5 mass concentrations. Assuming all mass is accounted for using collocated TEOMs with FDMS, the three other subtraction methods were assessed for biases in absolute mass concentration, temporal variability, spatial correlation, and homogeneity. Results show collocated units without FDMS closely estimate actual PM10-2.5 mass and spatial characteristics due to the very low semivolatile PM10-2.5 concentrations in Colorado. Estimation using either a PM2.5 or PM10 monitor without FDMS introduced absolute biases of 2.4 µg/m3 (25%) to –2.3 µg/m3 (–24%), respectively. Such errors are directly related to the unmeasured semivolatile mass and alter measures of spatiotemporal variability and homogeneity, all of which have implications for the regulatory and epidemiology communities concerned about PM10-2.5. Two monitoring sites operated by the state of Colorado were considered for inclusion in the CCRUSH acute health effects study, but concentrations were biased due to sampling with an FDMS-equipped PM2.5 TEOM and PM10 TEOM not corrected for semivolatile mass loss. A regression-based model was developed for removing the error in these measurements by estimating the semivolatile concentration of PM2.5 from total PM2.5 concentrations. By estimating nonvolatile PM2.5 concentrations from this relationship, PM10-2.5 was calculated as the difference between nonvolatile PM10 and PM2.5 concentrations.

Implications: Errors in the estimation of PM10-2.5 concentrations using subtraction methods were shown to be related to the unmeasured semivolatile mass when using certain combinations of TEOM instruments. For the northeastern Colorado region, the absolute bias associated with this error significantly affects mean and 95th percentile values, which would affect assessment of compliance if PM10-2.5 is regulated in the future. Estimating PM10-2.5 mass concentrations using nonvolatile mass concentrations from collocated PM10 and PM2.5 TEOM monitors closely estimates the total PM10-2.5 mass concentrations. A corrective model that removes the described error was developed and applied to data from two sites in Denver.

Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

17.
Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.  相似文献   

18.
Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakersfield, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 microns (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of approximately 3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

19.
From July 1999 to January 2000, the total suspended particulate matter (TSP) in the atmosphere collected by high-volume sampler was used to determine the particulate Hg of four function districts and one contrast district in the City of Changchun,China. The study results indicated that the value of the volume-based concentration and the mass-based concentration of each district during the heating period are higher than those of the nonheating period. The volume-based concentration of the urban districts is higher than that of the contrast district. Atmospheric Hg concentrations varied temporally and spatially. TSP is the critical factor of particulate Hg concentration; precipitation is the main meteorological factor affecting Hg (p) concentration in the atmosphere; coal combustion and wind-blown soil material are the important sources of atmospheric particulate Hg. During heating period, the coal combustion makes a greater contribution to Hg(p) than that of wind-blown soil materials.  相似文献   

20.
The real-time ambient mass sampler (RAMS) is a continuous monitor based on particle concentrator, denuder, drier, and tapered element oscillating microbalance (TEOM) monitor technology. It is designed to measure PM2.5 mass, including the semi-volatile species NH4NO3 and semi-volatile organic material, but not to measure PM2.5 water content. The performance of the RAMS in an urban environment with high humidity was evaluated during the July 1999 NARSTO-Northeast Oxidant and Particles Study (NEOPS) intensive study at the Baxter water treatment plant in Philadelphia, PA. The results obtained with the RAMS were compared to mass measurements made with a TEOM monitor and to constructed mass obtained with a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) sampler designed to determine the chemical composition of fine particles, including the semi-volatile species. An average of 28% of the fine particulate material present during the study was semi-volatile organic material lost from a filter during particle collection, and 1% was NH4NO3 that was also lost from the particles during sampling. The remaining mass was dominantly nonvolatile (NH4)2SO4 (31%) and organic material (37%), with minor amounts of soot, crustal material, and nonvolatile NH4NO3. Comparison of the RAMS and PC-BOSS results indicated that the RAMS correctly monitored for fine particulate mass, including the semivolatile material. In contrast, the heated filter of the TEOM monitor did not measure the semi-volatile material. The comparison of the RAMS and PC-BOSS data had a precision of +/-4.1 microg/m3 (+/-9.6%). The precision of the RAMS data was limited by the uncertainty in the blank correction for the reversible adsorption of water by the charcoal-impregnated cellulose sorbent filter of the RAMS monitor. The precision of the measurement of fine particulate components by the PC-BOSS was +/-6-8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号