首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
砷及其砷化物有剧毒,若处置不当,通过土壤、大气和水介质等各种途径进入环境,严重影响人类的生存环境。因此对含砷废料资源化利用和无害化处理一直是环保工作重要研究课题。针对含砷废料来源、稳定性评价方法和资源化综合利用技术进行分析,在此基础上提出含砷废料资源化利用和无害化处置建议。要从根本上建立健全相应的法律法规、标准体系,建立管理网络,培育市场运行体系,强化技术支撑体系,大力推广减量化、资源化、无害化的高新实用技术。  相似文献   

2.
专利资讯     
专利名称:废旧印刷电路板中非金属材料的再利用方法,专利名称:电路板及电镀污泥资源化回收工艺,专利名称:利用废弃印刷电路板中非金属材料制备酚醛模塑料的方法,专利名称:一种汽车与电子废弃电路板的脱焊设备,专利名称:从镀金印刷电路板废料中回收金和铜的方法.  相似文献   

3.
按照《废钢铁加工行业准入条件》《废塑料综合利用行业规范条件》《建筑垃圾资源化利用行业规范条件》及相关公告管理办法的要求,经企业自愿申报、省级工业和信息化主管部门审核、专家评审等程序,现将符合废钢铁加工行业准入条件、废塑料综合利用、建筑垃圾资源化利用行业规范条件的企业名单予以公示。  相似文献   

4.
正工程中心致力于环境工程和材料加工工程两大学科交叉领域的应用基础、工程化和产业化研究。主要研究方向是:①建筑废弃物资源化技术;②工业废弃物资源化技术;③生活垃圾资源化技术;④农业废弃物资源化技术。在国内首创了《再生资源科学与工程》本科专业,承担材料加工和环境工程两个专业的博士和硕士培养工作。  相似文献   

5.
正工程中心致力于环境工程和材料加工工程两大学科交叉领域的应用基础、工程化和产业化研究。主要研究方向是:①建筑废弃物资源化技术;②工业废弃物资源化技术;③生活垃圾资源化技术;④农业废弃物资源化技术。在国内首创了《再生资源科学与工程》本科专业,承担材料加工和环境工程两个专业的博士和硕士培养工作。  相似文献   

6.
废镉镍电池再资源化研究具有重大的社会、环境及经济效益.火法及湿法再资源化技术各具特色.利用废镉镍电池制备Ni-Zn系软磁铁氧体材料是今后一个时期废镉镍电池再资源化的发展方向.  相似文献   

7.
随着北京市垃圾分类工作的开展,厨余垃圾分出量不断提高,厨余垃圾资源化利用越来越受到重视.通过对北京市厨余垃圾资源化利用现状进行分析,发现制约厨余垃圾资源化产业化发展的是堆肥产品销售渠道不畅通,针对这个情况,通过对现有厨余垃圾资源化标准进行梳理,分析现有标准中存在的问题,并针对问题提出建议,为厨余垃圾资源化工作提供参考.  相似文献   

8.
味精废水产生量大,平均生产1t100%味精,会产生10~12 t味精废水,废水中含有大量的有机物,处理费用较高,味精行业负担较重,直接排放会造成资源的浪费,同时也会造成水体污染,所以实现味精废水资源化利用是缓解味精行业经济压力的有效途径.根据目前中国味精废水资源化利用研究现状,从废物资源化利用角度进行了归纳和总结.并以味精行业为主导,通过横向延伸产业链、纵向耦合共生,提出建立味精废水资源化网络的方法.  相似文献   

9.
随着大量汽车进入报废期,如何对报废汽车进行资源化再利用成为人们面临的重要课题。报废汽车上的非金属材料,由于种类多、组成复杂,资源化再利用的难度较大,大多被废弃,会造成资源浪费、环境污染等一系列问题。塑料、橡胶、玻璃是汽车中主要的非金属材料,这些物质的资源化利用,对改善环境、节约资源,具有极大的社会经济效益。着重对报废汽车中塑料、橡胶、玻璃主要非金属材料的资源化利用技术现状进行研究,探究提高其回收利用水平的思路,对报废汽车非金属材料的资源化再利用提供一定的参考。  相似文献   

10.
以矿化垃圾作为研究对象,对矿化垃圾填埋场进行综合治理,使填埋场垃圾得到资源化利用,将填埋场土地恢复使用,提升垃圾资源化利用后产生的经济效益。  相似文献   

11.
针对现行交通路障存在的问题,在前期试验研究的基础上,研究开发了多功能再生混凝土球型路障,不但可有效利用废弃混凝土、节约天然石材资源,还具备防撞击、夜间可视性好等安全功能,具有良好的社会效益、环境效益和经济效益。  相似文献   

12.
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.  相似文献   

13.
Iran is the second largest stockholder of construction stones with 10 % of world production ;and there are more than 4000 stone cutting and fabrication industries (SCFIs). In the processing of raw stones, a considerable part of stone is turned into waste. Generated wastes include excess parts of different stones and sludge. The present paper reviews the state of SCFIs waste management using multiple data sources including site, analysis of effluent and sludge samples, and conducting interviews with people who are involved in 286 SCFIs in Qom and Tabriz. The results revealed that currently almost 35 to 52.5 % of raw stones were converted to solid wastes depending on stone cutting and processing methods, type of stones and their quality, which seemed a high percentage. Also, the effluents between 0.8 and 2.8 m3 were generated per ton of processed stone. Based on the analysis of heavy metals with atomic absorption spectroscopy, sludge samples contained a considerable amount of Pb, Cu, Cr, and Cd. It was also found that the lack of specific recycling, reuse and disposal programs and suitable supervision has led to uncontrolled disposal of stone wastes and sludge in different areas. However, there are good opportunities for reuse and recycling of the SCFIs wastes.  相似文献   

14.
The kaolin processing industry generates large amounts of waste in producing countries such as Brazil. The aim of this study was to characterize kaolin processing waste and evaluate its suitability as an alternative ceramic raw material for the production of porous technical ceramic bodies. The waste material was physically and chemically characterized and its thermal behaviour is described. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. Fired samples were microstructurally analysed by X-ray diffraction and scanning electron microscopy. The results indicated that the waste consisted of quartz, kaolinite, and mica, and that ceramic formulations containing up to 66% of waste can be used for the production of ceramics with porosities higher than 40% and strength of about 70 MPa.  相似文献   

15.
With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed.  相似文献   

16.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   

17.
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today’s rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term ‘zero emission systems’. The concept of zero emissions can be applied successfully with today’s technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input–output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.  相似文献   

18.
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.  相似文献   

19.
Managing construction and demolition (C&D) wastes has challenged many municipalities with diminishing waste disposal capacity. Facing such challenges, the Massachusetts Department of Environmental Protection proposed a policy restricting the landfill disposal of certain C&D waste materials, if unprocessed. This research is to study the potential economic impact of such restriction on construction contractors and C&D waste processors. A spreadsheet-based systems analysis model has been developed to assist the cost-benefit evaluation for various C&D waste management scenarios. The model, developed based on the mass balance principle, is designed to track a C&D waste stream through the various stages of a waste management system, i.e. generation, source separation, processing, recycling, and final disposal. This model, by incorporating the material flow data with the cost/revenue data associated with each management activity, can then provide an economic analysis for a proposed C&D waste management scenario. A case study illustrating the application of this model for Massachusetts is also presented.  相似文献   

20.
For all countries analyzed so far, Material Flow Analysis/Accounting (MFA) studies indicate that the overall stock of materials within the economy is growing. Most are construction minerals such as asphalt, cement, sand and gravel, crushed stone, and other aggregates. In the analyses described in this paper, flows and stocks of construction minerals were estimated for Japan from the past to the future to elucidate: (1) the mechanisms by which construction minerals become waste, and (2) the future supply of and demand for recycled crushed stone. The following conclusions were drawn: (1) The amounts of waste construction minerals generated have been and will be at much lower levels than the domestic demand for construction minerals. These differences might indicate consistent growth of the stock of construction minerals, which will become waste in the future. However, certain amounts of materials that we account for as stock can be interpreted already in the environment as dead stock or dissipated waste; such materials can be called "missing stock" or "dissipated stock". Capturing that missing or dissipated stock is very important because it provides information that clarifies the environmental impacts and loss of resources that these materials cause; it allows estimation of appropriate future waste generation. (2) The amount of construction minerals that are recognized as waste was estimated to increase in the future. An imbalance in the supply of and demand for recycled crushed stone will likely occur in the near future if an expected decline in future road construction is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号