首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Storage of cattle slurry is a significant source of ammonia (NH3) emissions. Emissions can be reduced by covering slurry stores, but this can incur significant costs, as well as practical and technical difficulties. In this pilot-scale study, slurry was stored in small tanks (500 L) and the effectiveness of natural crust development for reducing NH3 emissions was assessed in a series of experiments. Also, factors important in crust development were investigated. Measurements were made of crust thickness and specially adapted tank lids were used to measure NH3 emissions. Slurry dry matter (DM) content was the most important factor influencing crust formation, with no crust formation on slurries with a DM content of <1%. Generally, crusts began to form within the first 10 to 20 d of storage, at which time NH3 emission rates would decrease. The formation of a natural crust reduced NH3 emissions by approximately 50%. The type of bedding used in the free stall barn did not influence crust formation, nor did ambient temperature or air-flow rate across the slurry surface. There was a large difference in crust formation between slurries from cattle fed a corn (Zea mays L.) silage-based diet and those fed a grass silage-based diet, although dietary differences were confounded with bedding differences. The inclusion of a corn starch and glucose additive promoted crust formation and reduced NH3 emission. The maintenance of a manageable crust on cattle slurry stores is recommended as a cost-effective means of abating NH3 emissions from this phase of slurry management.  相似文献   

2.
Livestock slurry storages are sources of methane (CH?), nitrous oxide (NO?), and ammonia (NH?) emissions. Total solids (TS) content is an indicator of substrate availability for CH? and N?O production and NH? emissions and is related to crust formation, which can affect these gas emissions. The effect of TS on these emissions from pilot-scale slurry storages was quantified from 20 May through 16 Nov. 2010 in Nova Scotia, Canada. Emissions from six dairy slurries with TS ranging from 0.3 to 9.5% were continuously measured using flow-through steady-state chambers. Methane emissions modeled using the USEPA methodology were compared with measured data focusing on emissions when empty storages were filled, and retention times were >30 d with undegraded volatile solids (VS) remaining in the system considered available for CH? production (VS carry-over). Surface crusts formed on all the slurries. Only the slurries with TS of 3.2 and 5.8% were covered completely for ~3 mo. Nitrous oxide contributed <5% of total greenhouse gas emissions for all TS levels. Ammonia and CH? emissions increased linearly with TS despite variable crusting, suggesting substrate availability for gas production was more important than crust formation in regulating emissions over long-term storage. Modeled CH? emissions were substantially higher than measured data in the first month, and accounting for this could improve overall model performance. Carried-over VS were a CH? source in months 2 through 6. The results of this study suggest that substrate availability regulates emissions over long-term storage and that modifying the USEPA model to better describe carbon cycling is warranted.  相似文献   

3.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

4.
Methane oxidation in slurry storage surface crusts   总被引:1,自引:0,他引:1  
Livestock manure is a significant source of atmospheric methane (CH4), especially during liquid storage. In liquid manure (slurry) storages a surface crust may form naturally, or an artificial surface crust can be established. We investigated whether there is a potential for CH4 oxidation in this environment. Surface crust materials were sampled from experimental storages with cattle slurry (with natural crust) or anaerobically digested cattle slurry (with straw layer) that had been stored with or without a wooden cover. Extracts of surface crust material were incubated with 5.6% CH4 in the headspace, and methanotrophic activity was demonstrated in all four treatments following a 4- to 10-d lag phase. Subsequent incubation of field-moist surface crust material with 350 microL L(-1) CH4 also showed CH4 oxidation, indicating a potential for CH4 removal under practical storage conditions. There was no CH4 oxidation activity during incubation of autoclaved samples. Methane oxidation rates were 0.1 to 0.5 mg kg(-1) organic matter (OM) h(-1), which is comparable with the activity in wetlands and rice paddies. Partial drying increased CH4 oxidation to 0.2 to 1.4 mg kg(-1) OM h(-1), probably as a result of improved diffusivity within the surface crust. Rewetting reversed the stimulation of methanotrophic activity in some treatments, but not in others, possibly due to a decline in CH4 production in anaerobic volumes, or to growth of methanotrophs during incubation. This study presents direct evidence for methanotrophic activity in slurry storages. Measures to ensure crust formation with or without a solid cover appear to be a cost-effective greenhouse gas mitigation option.  相似文献   

5.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

6.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   

7.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

8.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

9.
Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.  相似文献   

10.
Intensively managed grasslands are potentially a large source of NH3, N2O, and NO emissions because of the large input of nitrogen (N) in fertilizers. Addition of nitrification inhibitors (NI) to fertilizers maintains soil N in ammonium form. Consequently, N2O and NO losses are less likely to occur and the potential for N utilization is increased, and NH3 volatilization may be increased. In the present study, we evaluated the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) on NH3, N2O, NO, and CO2 emissions following the application of 97 kg N ha(-1) as ammonium sulfate nitrate (ASN) and 97 kg NH4+ -N ha(-1) as cattle slurry to a mixed clover-ryegrass sward in the Basque Country (northern Spain). After slurry application, 16.0 and 0.7% of the NH4+ -N applied was lost in the form of N2O and NO, respectively. The application of DMPP induced a decrease of 29 and 25% in N2O and NO emissions, respectively. After ASN application 4.6 and 2.8% of the N applied was lost as N2O and NO, respectively. The application of DMPP with ASN (as ENTEC 26; COMPO, Münster, Germany) unexpectedly did not significantly reduce N2O emissions, but induced a decrease of 44% in NO emissions. The amount of NH4+ -N lost in the form of NH3 following slurry and slurry + DMPP applications was 7.8 and 11.0%, respectively, the increase induced by DMPP not being statistically significant. Levels of CO2 emissions were unaffected in all cases by the use of DMPP. We conclude that DMPP is an efficient nitrification inhibitor to be used to reduce N2O and NO emissions from grasslands.  相似文献   

11.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

12.
Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties.  相似文献   

13.
Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected.  相似文献   

14.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

15.
The National Research Council identified odors as a significant animal emission and highlighted the need to develop standardized protocols for sampling and analysis. The purpose of our study was to compare different odor sampling techniques for monitoring odors emitted from stored swine manure. In our study, odorous headspace air from swine manure holding tanks were analyzed by human panels and analytical techniques. Odorous air was analyzed by human panels using dynamic dilution olfactometry (DDO). Chemical analysis used acid traps for ammonia (NH?), fluorescence for hydrogen sulfide (H?S), and thermal desorption gas chromatography-mass spectrometry for volatile organic compounds (VOCs). Chemical analysis included the use of gas chromatography-olfactometry (GC-O) for determining key odorants. Chemical odorant concentrations were converted to odor activity values (OAVs) based on literature odor thresholds. The GC-O technique used was GC-SNIF. Dilution thresholds measured by different odor panels were significantly different by almost an order of magnitude even though the main odorous compound concentrations had not changed significantly. Only 5% of the key odorous VOCs total OAVs was recovered from the Tedlar bags used in DDO analysis. Ammonia was the only chemical odorant significantly correlated with DDO analysis in the fresh (1 wk) and aged manure. Chemical analysis showed that odor concentration stabilized after 5 to 7 wk and that HS was the most dominant odorant. In aged manure, neither volatile fatty acids (VFAs) nor HS was correlated with any other chemical odorant, but NH, phenols, and indoles were correlated, and phenols and indoles were highly correlated. Correlation of odorant concentration was closely associated with the origin of the odorant in the diet. Key odorants determined by chemical and GC-O included indoles, phenols, NH?, and several VFAs (butanoic, 3-methylbutanoic, and pentanoic acids).  相似文献   

16.
Contamination of freshwater by estrogens from manure applied to agricultural land is of grave concern because of the potentially harmful effects on aquatic life and human health. Recent developments in liquid manure (slurry) management include partial removal of particulate slurry dry matter (PSDM) by separation technologies, which may also remove parts of the estrogens and enhance infiltration of the slurry on field application and hence the interaction between estrogens and the soil matrix. This study investigated how 17β-estradiol (E2), a natural estrogen commonly found in pig manure, sorbs to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil-slurry environment. A crude fiber fraction (SS1) was prepared by sieving (<500 μm) the solids removed by an on-farm separation process. Three other size fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L(-1) CaCl(2) and in natural pig urine matrix. Sorption in 0.01 mol L(-1) CaCl(2) was higher than that in pig urine for all solids used. Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid-liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon, were lower for slurry separates. Mixing slurry separates with soil increased the sorption of E2 to the solid phase significantly in the order: SS1 < SS3 < SS2 for both liquid phases. In contrast, SS4 reduced the sorption of E2 to the solid phase by increasing the sorption to suspended or dissolved organic matter. The study suggested that potentially 50 to 75% of E2 in slurry can be removed from the liquid fraction of slurry by physical separation.  相似文献   

17.
The Delphi technique is a means of aggregating the judgement of a panel of experts in order to improve the quality of decision-making. This paper provides a case study of the technique by undertaking a three-round Delphi study to determine a package of best available techniques to reduce nitrogen emissions from a poultry unit under the Integrated Pollution Prevention and Control Directive (IPPC). Forms of nitrogen addressed included ammonia (NH3), nitrous oxide (N2O) nitrogen oxides (NOx), dusts and nitrate (NO3-), with the study providing a means to prioritise the pollution concerns on different spatial scales. The priority pollutant issues were the contribution of NH3 to eutrophication, the global cooling effect of NH4+ aerosol, the role of NH4+ as a vector for atmospheric transport of NOx and SO2, the contribution of N2O to global warming, and NO3- leaching. Reduced nitrogen (NHx) was rated as a priority on all scales, while N2O and NO3- were rated as priorities only on global and local scales, respectively. The study indicated the need for abatement techniques at each stage of poultry rearing and waste management, with particular attention to reduce NH3 emissions, reflecting the priority pollutant concerns. Measures identified by the panel include maintenance of dry litter, low emission removal of litter from housing and storage of litter under cover. Once the litter has left the farm, this should either be used as a biofuel for electricity generation or rapidly incorporated into agricultural soils. The amounts and timing of manure application should be tuned to crop needs. Uncertainties in the Delphi technique limit its suitability as a stand-alone decision making tool. However, the Delphi technique proved useful in identifying priority pollutant issues, areas of agreement, disagreement and where information is lacking. This demonstrates its use when dealing with the complex issues of prioritising pollution issues and abatement approaches.  相似文献   

18.
Gaseous emissions from swine (Sus scrofa) manure storage systems represent a concern to air quality due to the potential effects of hydrogen sulfide, ammonia, methane, and volatile organic compounds on environmental quality and human health. The lack of knowledge concerning functional aspects of swine manure management systems has been a major obstacle in the development and optimization of emission abatement technologies for these point sources. In this study, a classification system based on gas emission characteristics and effluent concentrations of total phosphorus (P) and total sulfur (S) was devised and tested on 29 swine manure management systems in Iowa, Oklahoma, and North Carolina in an effort to elucidate functional characteristics of these systems. Four swine manure management system classes were identified that differed in effluent concentrations of P and S, methane (CH4) emission rate, odor intensity, and air concentration of volatile organic compounds (VOCs). Odor intensity and the concentration of VOCs in air emitted from swine manure management systems were strongly correlated (r2 = 0.88). The concentration of VOC in air samples was highest with outdoor swine manure management systems that received a high input of volatile solids (Type 2). These systems were also shown to have the highest odor intensity levels. The emission rate for VOCs and the odor intensity associated with swine manure management systems were inversely correlated with CH4 and ammonia (NH3) emission rates. The emission rates of CH4, NH3, and VOCs were found to be dependent upon manure loading rate and were indirectly influenced by animal numbers.  相似文献   

19.
Ammonia emissions after spreading animal manure contribute a major share to N losses from agriculture. There is an increasing interest in anaerobic co-digestion of liquid manure with organic additives. This fermentation results in a change of physical and chemical parameters of the slurry. Among these are an increased pH and ammonium content, implying a higher risk of NH3 losses from fermentation products. To compare different application techniques and the effect of fermentation on NH3 volatilization, we used the standard comparison method and tested it for reliability. This method seems to be perfectly suited for experiments with a large number of treatments and replicates if prerequisites concerning the experimental layout are considered. We tested four different application techniques on arable and grassland sites. The more the substrate was incorporated into the soil or applied near the soil surface on the grassland site, the less NH3 was lost. Injection of the substrate reduced losses to less than 10% of applied NH4+ on both sites, whereas losses after splash plate application amounted to more than 30%. Trail shoe application on grassland performed as well as injection. Harrowing on arable land also reduced emissions efficiently, if harrowing occurred within the first 2 h after application. Emissions from trail hose-applied co-fermentation product were not greater than from unfermented slurry. Better infiltration of the less viscous substrate seemed to have compensated for the increased loss potential.  相似文献   

20.
Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号