首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
利用雾化挥发发生原理制备二氧化钛气溶胶,将二氧化钛气溶胶颗粒负载在石英玻璃纤维上,制备二氧化钛-石英玻璃纤维功能性空气过滤材料。实验研究了二氧化钛气溶胶发生相关参数、石英玻璃纤维直径分布、透过率曲线、最易透过粒径,并对二氧化钛气溶胶颗粒在石英玻璃纤维上的负载过程和负载形态进行了探讨。研究结果表明,发生的二氧化钛气溶胶具有可控的粒径分布和较好的分散性;中值粒径128 nm的二氧化钛气溶胶颗粒能够稳定负载在3μm的石英玻璃纤维上;二氧化钛在石英玻璃纤维上的沉积量受沉积时间的影响,沉积过程中阻力开始变化不大,随后在沉积饱和点后阻力迅速增大,滤料填充度越高沉积饱和点出现时间越早;二氧化钛粒子在纤维表面的负载形态除颗粒、团簇外,还有三维的树枝状空间结构。  相似文献   

2.
使用格子Boltzmann方法对含尘气体通过布袋滤料纤维的流动进行了数值模拟,采用拉格朗日方法跟踪了颗粒相中每个粒子的位置和速度并进行单向耦合计算。分析了气流通过纤维捕集体过程中的压降的变化规律,结果与达西渗透定律吻合。与此同时,对粒径小于1μm的气溶胶粒子在布袋纤维捕集体上的沉积规律展开了讨论。结果表明,粒径小于0.01μm的粒子的捕集主要受粒子的布朗随机扩散效应的控制;粒径大于0.1μm的粒子则主要依靠纤维滤料的拦截作用而沉积在捕集体表面;而粒径在0.01~0.1μm范围的粒子则具有较低的捕集效率。模拟结果为研究袋式除尘的过滤机理提供了依据。  相似文献   

3.
粉尘对电除尘器气流分布影响仿真研究   总被引:4,自引:3,他引:1  
为了更加精确地研究电除尘器入口气流分布特征, 论文采用欧拉-拉格朗日多相流模型,对电除尘器内部气流分布进行了数值仿真。由于在进入除尘器的气流中引入了粉尘粒子,不仅可获得粉尘及粉尘颗粒粒径大小对气流分布均匀性的影响,而且这种模拟更加接近除尘器的气流实际情况。提出的模拟方法为电除尘器的气流分析提供了一条新的途径。  相似文献   

4.
矿山粉尘治理需通过选择合理的除尘方法,才能达到较好的降尘效果;目前,带有长管道的机械通风除尘措施是矿山粉尘治理的有效措施之一。随着粉尘在管道内长时间排出,管道内势必会产生沉积现象。应用计算流体力学软件FLUENT 6.3.26对不同粒径的二氧化硅粉尘颗粒在水平通风管道内的沉积规律进行模拟计算,其中通风管道管径D=500mm,长度l=20 m,送风速度v=12 m·s~(-1)。模拟结果表明:微颗粒(100μm)在管道内停留时间较短,最长时间为3.91 s,受湍流影响较大,沉降现象不明显,运移规律呈无序状;粗颗粒(5~10 mm)在管道内停留时间相比微颗粒粉尘,停留时间较短,最长时间为1.71 s,受湍流影响较小,沉降现象明显,运移规律呈波浪状循环上升降落,波峰高度随管程增大而逐渐降低。  相似文献   

5.
建立了非稳态过滤下的固定床颗粒层除尘效率模型.该模型尽可能地包含了影响固定床颗粒层除尘的参数,反映了沉积粉尘对除尘效率的影响;研究了以粒状脱硫剂为滤料的固定床在不同颗粒层厚度、空床气速、粒径下的除尘效率.结果表明,在颗粒层厚度为400~800 cm、空床气速≤0.4 m/s的条件下,颗粒层的除尘效率可达90%以上.  相似文献   

6.
单纤维过滤介质表面尘粒捕集的随机模拟   总被引:1,自引:0,他引:1  
基于控制面概念和粒子运动轨迹计算,建立单纤维过滤介质表面尘粒捕集的三维随机计算模型,采用Ku-wabara流场表征单纤维表面的气流绕流特征。计算分析了St数、无量纲粒径及单纤维过滤模型填充密度对沉积物形态结构和积尘状态下单纤维捕集效率的影响。结果指出,St数对沉积物形态结构具有显著作用,随St数减小,沉积物由紧密的堆积结构演变为分叉显著的树枝状结构。模拟结果还发现,无论过滤条件如何变化,无量纲单纤维捕集效率随捕集粒子数呈近似线性增加关系。  相似文献   

7.
为了促进粉尘沉降,在双层滤料颗粒床高温除尘器灰斗处增加了一个抽气外循环并且在抽气口附近增设挡板,使用Fluent软件对除尘器的气固两相流场进行数值模拟,在抽气循环率为1/6情况下,分析不同挡板的布置方式时粉尘的沉降率。仿真结果表明:当挡板气流通道宽300 mm、高1 400 mm、层间距100 mm、层数6层时,可以大幅增加粉尘沉降率,与无挡板布置方式相比,粉尘粒径为1、25、50μm的沉降率分别增加了27.15%、28.9%、35.19%。通过分析可知,挡板气流通道宽度、挡板高度和挡板层数的变化对于100μm以下粒径的粉尘颗粒沉降效果影响较为明显。  相似文献   

8.
基于颗粒动力学理论,利用Fluent软件中的气体-颗粒两相流体模型,对新型一体化脱硫工艺(NID)反应器中不同工况下的三维流场进行数值模拟,并结合工厂实测数据及文献数据对模拟结果进行验证。结果表明,Fluent软件的模拟数据与工厂实测数据及文献数据相吻合,利用Fluent软件模拟了NID反应器内颗粒速度和浓度的分布,分析了反应器内流场的形成机制以及烟气进速和颗粒粒径对塔内压降的影响。由模拟结果可知,在烟气进速为18m/s、颗粒粒径为0.5~50.0μm时,颗粒浓度分布均匀,塔内回流区最小,压强变化稳定,最有利于提高实际工业运行的稳定性与安全性。  相似文献   

9.
为解决大型露天矿回填溜槽运输系统产生的粉尘污染问题,运用溜槽物料牵引流、落料诱导气流和剪切气流理论分析了溜槽工艺的粉尘析出机理。研究发现,溜槽运输系统粉尘的析出是诱导空气的尘化作用、剪切压缩尘化作用的结果,粉尘析出的主要影响因素包括物料的基本属性、运行速度及溜槽出口落差。基于气固两相流理论,利用数值模拟方法计算小空间粉尘颗粒的扩散规律和颗粒运动轨迹,结果显示溜槽系统粉尘粒径范围在0~100μm,物料流速度大于10m/s时,粉尘大部分被扬起,溜槽出口距离平台距离越大粉尘析出量越大。为制定多尺度、综合的粉尘防治措施提供必要的理论支撑与科学依据。  相似文献   

10.
微生物在采出水处理中的应用越来越广泛,但污水中的硫酸钙等在微生物表面的沉积会降低微生物的处理效果。为了研究硫酸钙垢在颗粒表面的沉积过程,利用光学显微镜、激光粒度仪测定了硫酸钙垢在粘土颗粒表面的生长形态以及粒径的大小与时间的关系;通过溶液析晶过程中电导率的变化,探索了垢在表面反应阶段的结晶动力学;同时对垢沉积过程中Zeta电位的变化规律进行研究。结果表明,硫酸钙在膨润土表面反应阶段为一级反应,反应速率常数为0.00675 min-1;10 min以后电导率不变进入晶粒长大期。晶体在粘土表面沉积过程中颗粒呈现大小循环变化趋势,总体在9~17μm之间变化。硫酸钙在膨润土表面沉积过程的Zeta电位由最大值的-34.6 m V逐渐恒定到-5~-7 m V。  相似文献   

11.
Abstract

A laboratory-scale electrostatic precipitator has been designed and constructed in which the grounded collector plate has been substituted by a set of wire screens placed perpendicularly to the gas flow. Particles are deposited onto the screens by two mechanisms—electrostatic deposition and diffusional deposition—which act simultaneously. On the one hand, electrostatic deposition is effective for relatively large particles, but it is quite ineffective for the smallest ones because their charging probability in the corona field is too low. On the other hand, the diffusional collection efficiency of particles on fibers is high for small particles but low for the larger ones. Therefore, the simultaneous diffusional-electrostatic precipitation may become a useful technique for efficient filtration of particles below 0.1 μm. A preliminary experimental evaluation of this filtering device has shown that submicrometer particles with diameters down to a few nanometers can be collected with number efficiencies greater than 99%.  相似文献   

12.
A laboratory-scale electrostatic precipitator has been designed and constructed in which the grounded collector plate has been substituted by a set of wire screens placed perpendicularly to the gas flow. Particles are deposited onto the screens by two mechanisms--electrostatic deposition and diffusional deposition--which act simultaneously. On the one hand, electrostatic deposition is effective for relatively large particles, but it is quite ineffective for the smallest ones because their charging probability in the corona field is too low. On the other hand, the diffusional collection efficiency of particles on fibers is high for small particles but low for the larger ones. Therefore, the simultaneous diffusional-electrostatic precipitation may become a useful technique for efficient filtration of particles below 0.1 microm. A preliminary experimental evaluation of this filtering device has shown that submicrometer particles with diameters down to a few nanometers can be collected with number efficiencies greater than 99%.  相似文献   

13.
The fine particles are considered a significant pollution problem. The wet electrostatic precipitators (ESPs) have advantages of efficient collection of the fine particles with lower pressure drop and eliminating reentrainment. The wetting properties of the collector surfaces have significantly important effect on wet ESPs’ stable and secure operation. The modified rigid collector (MRC) was modified by coating specific vinyl ester resin composites and loose glass fiber cloth over the conventional carbon steel in a certain way. The rigid collector surfaces before and after modification had been characterized by scanning electron microscopy (SEM) and interface tensiometer. The effect of operating temperatures on the wetting properties of the rigid collector surfaces before and after modification was investigated. The temperature range was 40~90 °C, and the wetting properties contained liquid holdup, surface flow rate, film rate, average film thickness, and critical saturation time. The modified rigid collector surface exhibited excellent wetting properties at the operating temperatures. The fine particles collection performance compared among the MRC, the conventional rigid collector (CRC), and the flexible collector (FC) in the wet ESPs was investigated. The effects of the applied voltage, the water film, corona power, and the specific collecting area on the fine particles collection were evaluated. The modified rigid collector provided high fine particles collection effect with lower energy and water consumption.

Implications: To improve the submicron particles collection efficiency and decrease energy and water consumption, the formation of uniform water film over the collector surfaces has been widely studied. The modified rigid collector was modified by coating specific vinyl ester resin composites and loose glass fiber cloth (ERGF) over the conventional carbon steel (CCS) in a certain way. The modified rigid collector surface exhibited excellent wetting properties. The wet ESPs by the modified rigid collector exhibited significantly higher particles collection efficiency than by the conventional rigid collector.  相似文献   


14.
柳忠彬  王欢  曾涛  唐娟  张杰 《环境工程学报》2014,8(9):3749-3754
在长纤维束过滤器动力学模型和现场实验数据的基础上,利用Comsol Mulitiphysics仿真软件对长纤维束过滤器过滤过程进行数值模拟。将3类仿真曲线(滤出水颗粒浓度随时间的变化曲线、滤液浓度沿滤层的变化曲线、滤床各层比积泥量的变化曲线)与实验所得的真实曲线分别进行对比,两者比较接近。说明该过滤过程模型可用于影响长纤维束过滤器运行特性中单个或多个变化因素(初始滤速、纤维束装填密度、流入浓度和纤维丝直径等)实验结果的估算,可作为长纤维过滤器的实验研究、操作优化和结构设计的参考。  相似文献   

15.
Electrospinning is a simple and versatile process to produce polymer nanofibers, which are useful for ultrafine particle filtration. In this study, a polyurethane filter with an average fiber diameter of 150–250 nm was prepared through the electrospinning process and its filtration characteristics were investigated. We found that the electrospun fiber diameter was highly dependent on the polyurethane concentration, electric field, and tip-to-collector distance. As the polyurethane concentration, electric field, and tip-to-collector distance under the same electric field increased, the fiber diameter increased. We also found that the produced filter media had a minimum collection efficiency at particles sizes from 80 to 100 nm, which implies an electrostatic attraction between the filter and the test particles. Furthermore, we observed that interception was a predominant collection mechanism at Peclet numbers higher than 10 in nanofiber filtration for ultrafine particles.

Implications:

A polyurethane nanofiber filter with excellent mechanical properties was prepared, and the effect of operating conditions on fiber morphology was examined. The filter fabricated by an electrospinning process is charged and has high filtration efficiency due to electrostatic force. Therefore, it can be a good alternative to control hazardous ultrafine particles.  相似文献   


16.
This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm3 for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter.

Implications: As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.  相似文献   

17.
Dry deposition contributes significantly to the acidification of ecosystems. However, difficulties in measuring dry deposition of reactive gases and fine particles make routine direct monitoring impractical. An alternate approach is to use the “concentration monitoring” method in which dry deposition flux is estimated as the product of measured concentration and estimated deposition velocity. A sampling system that performs over the period of 6 hours to 7 days, depending on atmospheric concentrations, has been developed. It consists of a Teflon cyclone to exclude particles larger than about 2 μm, selective solid adsorption media for reactive gases—some of which are sampled from a transition flow to avoid possible bias from particle evaporation, a particle filter, and a final gas adsorption filter to collect the remaining trace gas. The sampler Is the first reported application of transition flow mass transfer for the collection and quantitative measurement of trace atmospheric gases. Laboratory and field tests have shown that the sampler performs well for HNO3(g).  相似文献   

18.
Controlled emplacement of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) particles at high particle concentration (1-10 g/L) is needed for effective in situ subsurface remediation using NZVI. Deep bed filtration theory cannot be used to estimate the transport and deposition of concentrated polyelectrolyte-modified NZVI dispersions (>0.03 g/L) because particles agglomerate during transport which violates a fundamental assumption of the theory. Here we develop two empirical correlations for estimating the deposition and transport of concentrated polyelectrolyte-modified NZVI dispersions in saturated porous media when NZVI agglomeration in porous media is assumed to reach steady state quickly. The first correlation determines the apparent stable agglomerate size formed during NZVI transport in porous media for a fixed hydrogeochemical condition. The second correlation estimates the attachment efficiency (sticking coefficient) of the stable agglomerates. Both correlations are described using dimensionless numbers derived from parameters affecting deposition and agglomeration in porous media. The exponents for the dimensionless numbers are determined from statistical analysis of breakthrough data for polyelectrolyte-modified NZVI dispersions collected in laboratory scale column experiments for a range of ionic strength (1, 10, and 50mM Na(+) and 0.25, 1, and 1.25 mM Ca(2+)), approach velocity (0.8 to 55 × 10(-4)m/s), average collector sizes (d(50)=99 μm, 300 μm, and 880 μm), and polyelectrolyte surface modifier properties. Attachment efficiency depended on approach velocity and was inversely related to collector size, which is contrary to that predicted from classic filtration models. High ionic strength, the presence of divalent cations, lower extended adsorbed polyelectrolyte layer thickness, decreased approach velocity, and a larger collector size promoted NZVI agglomeration and deposition and thus limited its mobility in porous media. These effects are captured quantitatively in the two correlations developed. The application and limitations of using the correlations for preliminary design of in situ NZVI emplacement strategies is discussed.  相似文献   

19.
The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.  相似文献   

20.
This paper presents the design and laboratory evaluation of a personal cascade impactor. The system is compact, lightweight, and uses a single battery-operated sampling pump. It operates at a flow rate of 5 L/min and consists of four impaction stages, each equipped with slit-shaped acceleration nozzles, and a backup filter. The impactor was calibrated using polydisperse particles. The 50% cut points of the four stages were 9.6, 2.6, 1.0, and 0.5 microm, respectively. The backup filter is placed downstream of the fourth stage and is used to collect the particles with an aerodynamic diameter smaller than 0.5 microm (dp < 0.5 microm). The major feature of this novel sampler is its ability not only to fractionate the particles with an aerodynamic diameter smaller than 10 microm to the various size fractions, but also to collect them onto relatively small polyurethane foam substrates without using adhesives. Although the impaction substrates are not coated with adhesives such as grease or mineral oil, particle bounce and re-entrainment losses were found to be insignificant. Interstage losses of particles smaller than 0.5 microm were less than 10%; for fine particles, less than 5%; and for coarse particles, less than 12%. The pressure drop across the four stages and the backup filter were 0.015 kPa (0.153 cm H2O),0.025 kPa (0.255 cm H2O), 0.274 kPa (2.794 cm H2O), 0.323 kPa (3.294 cm H2O), and 0.370 kPa (3.773 cm H2O), respectively. Particles can be easily recovered from the foam substrates using aqueous extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号