首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should be considered in using metal concentrations in mussel's soft tissues to evaluate the metal pollution in coastal waters.  相似文献   

2.
Experiments were conducted to determine the kinetics and relative importance of aqueous and dietary uptake of cadmium by the freshwater isopod Asellus aquaticus (L.). Test animals were exposed during 30 days to aqueous Cd in a continuous flow system (exposure levels: 0.2 - 10 microg litre(-1)) and kept on a diet of previously contaminated Elodea sp. (range of Cd concentrations: 2-350 microg g(-1), dry weight). Preceding semi-static experiments on dosage-control of the dietary factor revealed a rapid uptake of Cd by Elodea, with relatively high concentration factors (CF), which ranged from 4.8 to 5.5 (dry weight log (CF) after 16 days). For Asellus uptake from water appeared to be the predominant route. Highly significant bioconcentration of cadmium from water was observed in the animals, even at exposure levels below 1.0 microg litre(-1). In the various treatments, direct uptake from water accounted for 50-98% of the body burdens after 30 days exposure. The experimental results were described with a first order one-compartment bioaccumulation model. Model parameter estimates (mean +/- standard error) were obtained for rate constant of uptake (560 +/- 110 day(-1)), rate constant of elimination (0.032 +/- 0.017 day(-1)) and assimilation efficiency of Cd uptake from food (1.1 +/- 0.7%). The (dry weight) bioconcentration factor (BCF) and bioaccumulation factor (BAF) for extrapolated steady state conditions were estimated at 18 000 (BCF) and 0.08 (BAF). Experiments conducted at two different pH levels (5.9 versus 7.6) revealed no significant effects of pH on the uptake of aqueous Cd by the isopods. The results are discussed in relation to their potential significance to the field situation.  相似文献   

3.
The uptake of Cd, Se(IV) and Zn by the freshwater alga Scenedesmus obliquus and the subsequent transfer and release budget in Daphnia magna were investigated under different nutrient additions and cell incubation conditions. An increase in ambient phosphate concentrations from 0.5 micromol l(-1) to 50 micromol l(-1) significantly increased the intracellular accumulation of Cd (by 18x) and Zn (by 5x), but decreased the accumulation of Se (by 126x) in the alga. The percentage of these metals distributing in the intracellular pool of algae also increased substantially with increasing ambient P concentrations. Nitrate addition from 5.0 to 200 micromol l(-1) did not influence the uptake of any of the three metals, although a significant decrease in the intracellular Se distribution was observed. Radiolabeled algae under different nutrient manipulations (semi-continuous culture, starvation, and P-pulse treatments) were used to measure trophic transfer assimilation efficiency (AE) in Daphnia. When the algal cells were grown in a semi-continuous culture, starved for N and P, or were treated with P-pulse, the AEs of Cd and Zn were generally independent of the nutritional conditions, but the Se AE was significantly affected by different P levels. The efflux rate constants, determined during 10 d depuration following 7 days of dietary uptake, decreased significantly for Cd and Zn, but were relatively constant for Se with increasing P concentration. N-addition caused no effect on the metal efflux rate constants. P- or N-additions did not influence the release budget (including molting, neonates, excretion and feces) for all three elements in Daphnia. Our study indicated that phosphate enrichment may substantially increase metal uptake in green alga S. obliquus. Responses of trophic transfer in Daphnia to nutrient enrichment were metal specific. P-enrichment can possibly lead to considerable decrease on Se transfer from algae to zooplankton.  相似文献   

4.
Aravind P  Prasad MN 《Chemosphere》2005,61(11):821-1733
This paper analyzes the detoxification mechanisms adopted by amino- and organic acids to alleviate Cd toxicity. In addition, with our published data on Zn–Cd interactions, the influence of Zn (200 μM) supplements on the detoxification mechanisms of amino- and organic acids have also been studied. The experimental studies on metal uptake, lipid peroxidation levels, estimation of reduced and oxidized glutathione levels as well as γ-glutamylcysteine synthetase activity in amino acid supplemented Cd treatments indicated glutathione-mediated detoxification system, which was also enhanced by Zn (200 μM) supplements. However Zn did not aid in glutathione synthesis, but maintained the ratio of reduced and oxidized forms. The supplementation of organic acids to Cd treatments indicated detoxification through the mechanism of chelation. Zn seemed to be less influential on organic acids-mediated detoxification mechanism as compared to amino acid mediated detoxification system.  相似文献   

5.
Cadmium (Cd), copper (Cu), mercury (Hg), selenium (Se) and zinc (Zn) were determined in the liver, kidney and muscle of 29 loggerhead turtles, Caretta caretta, from the South Tyrrhenian Sea (Western Mediterranean). No significant differences (p>0.05) were detected between males and females. Trace element concentrations were not influenced by the size of the specimen except Se in the liver, which was negatively correlated with the curved carapace length (p<0.001). Muscles generally displayed the lowest trace element burdens, with the exception of Zn which contained concentrations as high as 176 microgg-1dwt. Kidneys displayed the highest Cd and Se mean concentrations (57.2+/-34.6 and 15.5+/-9.1 microgg-1dwt, respectively), while liver exhibited the highest Cu and Hg levels (37.3+/-8.7 and 1.1+/-1.7 microgg-1dwt, respectively). Whichever tissue is considered, the toxic elements had elevated coefficients of variation (i.e. from 60% to 177%) compared to those of the essential ones (i.e. from 14% to 65%), which is a consequence of homeostatic processes for Cu, Se and Zn. Globally, the concentrations of Hg remained low in all the considered tissues, possibly the result of low trophic level in sea turtles. In contrast, the diet of loggerhead turtles would result in a significant exposure to Cd. Highly significant correlations between Cd and Cu and Zn in the liver and kidney suggest that efficient detoxification processes involving MT occur which prevent Cd toxicity in loggerhead turtles.  相似文献   

6.
The main purpose of the present study was to detect the acute toxicity of cadmium (Cd) in F. paulensis and to investigate its effect on oxygen consumption and ammonium excretion different salinities. First, we examined the acute toxicity of Cd in F. paulensis at 24, 48, 72, and 96-h lethal concentration (LC50). Cd was significantly more toxic at 5 salinity than at 20 and 36. The oxygen consumption and ammonium excretion were estimated through experiments performed on each of the twelve possible combinations of three salinities (36, 20 and 5), at temperature 20 °C. Cd showed a reduction in oxygen consumption at 5 salinity, the results show that the oxygen consumption decreases with respect to the Cd concentration. At the highest Cd concentration employed (2 mg L−1), the salinity 5 and the temperature at 20 °C, oxygen consumption decreases 53.7% in relation to the control. In addition, after separate exposure to Cd, elevation in ammonium excretion was obtained, wish were 72%, 65% and 95% higher than the control, respectively. The results show that Cd is more toxic to F. paulensis at lower salinities.  相似文献   

7.
A kinetic approach was employed to determine the rates of metal uptake (Cd, Cr and Zn) from the dissolved phase and the rate constants of metal depuration in the mussel Perna viridis and the clam Ruditapes philippinarum. The effects of ambient metal concentration, salinity, and body size on the metal influx rate were examined. A linear positive relationship was observed between the metal influx rate and the metal concentration in ambient seawater. There was some evidence that Zn uptake was regulated by the bivalves in response to an increase in ambient Zn concentration. The uptake rate constant was highest for Zn and lowest for Cr in both bivalves, and was higher in mussels than in clams. The metal influx rate decreased by 1.6-1.8 times for the three metals when the salinity was increased from 15 ppt to 30 ppt. However, the effect of salinity on Zn influx in mussels was not statistically significant. A negative relationship of Cd and Zn influx rates with tissue dry weight was also found in both bivalves. Cr uptake in mussels was not significantly correlated with body size, but its uptake in clams was significantly correlated with body size. Metal concentration in ambient seawater appeared to be the most determining factor on metal uptake from the dissolved phase in both bivalves. The efflux rate constants of the three metals were within the range of 0.01-0.03 d-1, and were comparable between the mussels and the clams. Using a simple bioenergetic-based kinetic model, it was shown that both dissolved uptake and food ingestion can contribute to metal accumulation in the bivalves. However, Zn accumulation in the clam R. philippinarum was dominated by uptake from food ingestion. Metal partitioning in ingested food was found to be critical in affecting the relative importance of metal uptake from the dissolved phase and food source, primarily because of the large variability of this parameter in natural environments.  相似文献   

8.
Hu XL  Peng JF  Liu JF  Jiang GB  Jönsson JA 《Chemosphere》2006,65(11):1935-1941
The effect of some environmentally relevant factors including salinity, pH, and humic acids on the availability of bisphenol A (BPA) was evaluated by using the negligible-depletion solid-phase microextraction (nd-SPME) biomimetic method. With the variation of salinity (0–500 mM NaCl) and pH (5.0–8.5) of aqueous solutions, the partition coefficients of BPA between the nd-SPME fiber and the aqueous solution varied in the range of log D = 3.55–3.86, which indicates that the salinity and pH can influence the availability of BPA. By using Acros humic acid as model dissolved organic matter (DOM), it was also demonstrated that the environmental factors such as salinity and pH could affect the partitioning of BPA between DOM and aqueous solutions. The determined partition coefficients of BPA between dissolved organic carbon (DOC) and aqueous solutions were in the range of log DDOC = 4.03–5.60 for Acros humic acid solutions with 1–50 mg l−1 DOC. The influence of salinity and pH on log DDOC was more significant at low concentration (0–5 mg l−1) of DOC.  相似文献   

9.
Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000–November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47 ± 33 μg m−3 and 110 ± 50 μg m−3 at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210 ± 97 μg m−3) exceeding the European standard (150 μg m−3, 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P < 0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.  相似文献   

10.
Despite the great concerns about dioxins in the marine environments, the biokinetics and bioaccumulation of these compounds in marine organisms remains little known. Using radioactive tracers the aqueous uptake, dietary assimilation efficiency, and elimination of dioxins were measured in marine phytoplankton, copepods and seabream. The calculated uptake rate constant of dioxins decreased with increasing trophic levels, whereas the dietary assimilation efficiency (AE) was 28.5-57.6% in the copepods and 36.6-70.2% in the fish. The dietary AE was highly dependent on the food concentrations and food type. The elimination rate constant of dioxin in the copepods varied with different exposure pathways as well as food concentration and food type. Biokinetic calculation showed that dietary accumulation was the predominant pathway for dioxin accumulation in marine copepods and fish. Aqueous uptake can be an important pathway only when the bioconcentration of dioxins in the phytoplankton was low.  相似文献   

11.
In the terrestrial environment, standardized protocols are available for measuring the exposure and effects of contaminants to invertebrates, but none currently exist for vertebrates. In an effort to address this, we proposed that developing lizard embryos may be used as a terrestrial vertebrate model. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may affect hatchling size, mortality, as well as thyroid function. Toxicant-induced perturbations of thyroid function resulting from in ovo chemical exposure may result in toxicity during the critical perinatal period in reptiles. Fertilized Eastern fence lizard (Sceloporus undulatus) eggs were placed in cadmium (Cd)-spiked expanded perlite (0, 1.48, 14.8, 148, 1480, 14 800 μg Cd/g, nominal concentrations), artificially incubated at 28 °C, and examined daily for mortality. Whole lizard hatchlings as well as failed hatches were homogenized in ethanol and the homogenate was divided for Cd body residue analysis and thyroid hormone (triiodothyronine (T3) and thyroxine (T4)) analyses. Acute mortality was observed in the two highest doses (1480 and 14 800 μg Cd/g). Cadmium body residues showed a higher internal concentration with increasing exposure concentration indicating uptake of Cd. There was a decrease in T3:T4 ratio at the highest surviving dose (148 μg Cd/g), however, there were no differences observed in hatchling size measured as weight and snout-vent length, or in whole body thyroid hormone levels. In summary, this study has shown Cd amended to a solid phase representing soil (perlite) can traverse the thin, parchment-like shell membrane of the fence lizard egg and bioaccumulate in lizard embryos. We believe this study is a good first step in investigating and evaluating this species for use as a model.  相似文献   

12.
Erk M  Ruus A  Ingebrigtsen K  Hylland K 《Chemosphere》2005,61(11):90-1664
Tissue and subcellular accumulation of cadmium were studied in different tissues of three marine invertebrates (blue mussel Mytilus edulis, the tunicate Ciona intestinalis and the sea star Asterias rubens) using radioactive 109Cd as a tracer. The organisms were exposed to 0.05, 2 and 50 μg Cd l−1 for 21 days. Quantitative data were obtained by dissecting, weighing and subsequently measuring radioactivity in organs and tissues. Differences between each exposure and each tissue with regard to the amount of radioactivity and metallothionein (MT) content were evaluated. Obvious interspecies differences in Cd accumulation were observed, as well as differences between tissues of the three species. The highest concentrations of Cd in all exposure treatments were found in the hepatopancreas of M. edulis and body wall of A. rubens. Taking all treatments into account, Cd accumulation in the tunic of C. intestinalis was high compared to other tissues from this species. Over 60% of Cd was present in the S50 fraction in all treatments in all three species. Metallothionein levels were increased at the highest Cd-exposure in all species and tissues, except in branchial pharynx of C. intestinalis where the highest MT level was reached following exposure to 2 μg Cd l−1. The most surprising finding was that even the lowest Cd exposure concentration (0.05 μg Cd l−1) caused MT induction in pyloric caeca of A. rubens, but there was no dose-dependent increase in MT at higher exposure levels.  相似文献   

13.
Effects of major nutrient additions on metal uptake in phytoplankton   总被引:14,自引:0,他引:14  
We examined the influences of major nutrients (N, P, Si) on the accumulation of three trace metals [Cd, Se(IV), and Zn] in four species of marine phytoplankton (diatom, green alga, dinoflagellate, prasinophyte). Relative metal uptake was quantified by the kinetic measurements of metal concentration factor over a short exposure period. Our study demonstrated that nutrient addition significantly influenced the metal uptake rate and the cell growth rate in all four phytoplankton species. An increase in ambient N concentration considerably enhanced metal uptake by the cells. The dry weight concentration factor increased by 2.4-14.9 times for Cd, 1.1-4.0 times for Se, and 1.1-5.4 times for Zn in all four phytoplankton species with an addition of 176.4 microM N. The effects of P or Si addition on metal uptake and cell growth were less pronounced than the effects of N addition. Under most circumstances the rate of metal uptake increased exponentially with increasing cell growth rate constant. Only Se(IV) uptake in the diatom Phaeodactylum tricornutum was not correlated with cell growth rate. Se(IV) was not accumulated by the green algae Chlorella autotrophica at a high P concentration (7.2 microM), but appreciable accumulation was documented in cells inoculated without P addition. Our study therefore demonstrated that nutrient enrichments in many coastal waters can considerably affect trace metal uptake in phytoplankton and presumably metal trophic transfer in marine food chains.  相似文献   

14.
Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 degrees C in combination with salinities of 0, 0.5, and 5 per thousand. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants.  相似文献   

15.
Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.  相似文献   

16.
Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9–12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1–4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.  相似文献   

17.
We measured the concentration of several elements (arsenic [As], calcium [Ca], cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], selenium [Se] and zinc [Zn]) in adult and nestling pied flycatchers (Ficedula hypoleuca) and great tits (Parus major) at different distances to a Cu-Ni smelter in 2009. Feces of nestlings generally failed to correspond with internal element concentrations but reflected the pollution exposure, indicating an increased stress by removal of excess metals. The uptake of Cu and Ni were regulated, but As, Cd, Pb and Se accumulated in liver tissue. Pied flycatchers had generally higher element concentrations than great tits. The higher accumulation of As and Pb in pied flycatcher livers was explained by a more efficient absorption, whereas the higher Cd concentration was primarily due to different intake of food items. Age-related differences occurred between the two species, though both Cd and Se accumulated with age.  相似文献   

18.
Duman F  Obali O  Demirezen D 《Chemosphere》2006,65(11):2145-2151
In this study, submerged aquatic plant Potamogeton lucens, corresponding sediment and water samples were seasonally collected from Lake Sapanca (Turkey) and analysed for their heavy metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). While heavy metals concentrations in the water samples were decreased as Zn > Cr > Ni > Pb > Mn > Cu > Cd, in sediment samples were Mn > Zn > Ni > Cu > Cr > Pb > Cd, respectively. Generally, heavy metals concentrations in the plant tissues were decreased in sequence of Mn > Zn > Cu > Ni > Cr > Pb > Cd. It was determined that Cu, Mn and Zn were actively transported to the root, where they were accumulated especially in autumn. Lower accumulation factor ratios were seen in spring than other seasons. Cd exhibited a relatively clear pattern of increasing accumulation in P. lucens with increasing sediment metal concentrations. Significant positive correlations were observed between Cr, Cu, Ni and Cd contents in sediment and Cd contents in root of P. lucens. The investigations suggested that Ni and Mn have a tendency to be accumulated in leaf especially in autumn and Cr and Cd to be accumulated in shoot especially in summer.  相似文献   

19.
In this work, mercury (Hg), copper (Cu) and zinc (Zn) concentrations and tissue distribution are determined in seven benthic invertebrates species (the key species) from the Mid Atlantic Ridge (MAR) hydrothermal vent fields. The samples were collected from three hydrothermal vent fields – Menez Gwen, 840 m; Lucky Strike, 1700 m and Rainbow, 2300 m – near the Azores Triple Junction. These fields are characterized by different depths, geological context and chemical composition of the hydrothermal fluid, particularly the metal content, which is reflected by the metal concentrations in the organisms. Indeed, our results show that organisms from Menez Gwen presented the highest Hg concentrations, while those from Lucky Strike and Rainbow were richer in Cu and Zn. The potential transfer of these metals through two trophic links are also evaluated and include (1) the mussel Bathymodiolus azoricus and the commensal worm Branchipolynoe seepensis, and (2) three different species of shrimps and the crab Segonzacia mesatlantica. No evidence of Hg biomagnification in either of the vent food chains is clearly observed but an increase in Hg accumulation from prey to predator in the crustacean food chain. The same pattern was observed for Cu and Zn, even though these metals are not known to be generally biomagnified in food chains.  相似文献   

20.
The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2-66.8 kg per 10 m(2) plot) to simulate the long-term effect that the smelting of non-ferrous metal ore has on arable soils. The treated soil became strongly contaminated with metals (Cd 3.2-106 mg/kg, Pb 146-3452 mg/kg, Zn 465-11 375 mg/kg). Concentrations of Cd, Pb, and Zn in barley grain, barley straw meadow bluegrass, red clover, and potatoes were generally low. The highest metal concentrations were found in potato tubers (intact), meadow bluegrass, and barley straw. The observed reduction in crop yield was probably the result of possible nutrient imbalances rather than of metal (Zn, Cu) phytotoxicities. Zn and Cd uptake by the plants can be described by the saturation (plateau) model (y = ax(b), b < 1). The relationship between Pb in the soil and plants was linear with an extremely low slope (0.0001-0.0003). No excessive dietary intake of Cd is expected when Cd concentrations in barley grain and potato tubers grown on the contaminated soil are not higher than 0.6 and 1.0 mg/kg, respectively. Based on the risk analysis and taking into account the saturation model of the soil-plant metal relationship, it was concluded that, under the conditions of this experiment (neutral soil pH), soil with Cd concentrations of up to 30 mg/kg is still safe for production of these crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号