首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data.  相似文献   

2.
Al-Juaidi, Ahmed E., Jagath J. Kaluarachchi, and Ungtae Kim, 2010. Multi-Criteria Decision Analysis of Treated Wastewater Use for Agriculture in Water Deficit Regions. Journal of the American Water Resources Association (JAWRA) 46(2):395-411. DOI: 10.1111/j.1752-1688.2009.00409.x Abstract: Coastal regions such as the Gaza Strip of Palestine with limited freshwater supply suffer significantly due to the rapid depletion of water levels, seawater intrusion, and increased water demands. In such regions, use of treated wastewater (TWW) is a viable option if public health issues are addressed. The goal of this paper is to address the use of TWW in agriculture while considering net benefit, economic efficiency of water use (EEWU), environmental goals, and public health risks. The proposed methodology considers public health risk assessment and multi-criteria decision analysis to assess the beneficial use of TWW in agriculture. The methodology was demonstrated for the Gaza Strip. The health risk assessment suggests that increasing the elapsed time between irrigation and consumption and switching from surface to sprinkler and drip irrigation are practical measures to reduce public health risks. The optimization and decision analyses show that proper allocation of freshwater and TWW and distribution of land area by crop type can significantly increase the net benefit and EEWU. In most cases, net benefit increased by 44%, groundwater use reduced 29% while increasing the EEWU by threefold compared with the existing conditions. The multi-criteria decision analysis with weighted goal programming can develop flexible management options that considers a given decision-maker preference. When groundwater abstraction for agriculture reduced from 57 to 36 Mm3 as per decision analysis, the corresponding area below mean sea level decreased by 58% indicating significant aquifer recovery.  相似文献   

3.
Maps illustrating the different degrees of vulnerability within a given area are integral to environmental protection and management policies. The assessment of the intrinsic vulnerability of karst areas is difficult since the type and stage of karst development and the related underground discharge behavior are difficult to determine and quantify. Geographic Information Systems techniques are applied to the evaluation of the vulnerability of an aquifer in the alpine karst area of the Sette Comuni Plateau, in the Veneto Region of northern Italy. The water resources of the studied aquifer are of particular importance to the local communities. This aquifer must therefore be protected from both inappropriate use as well as possible pollution. The SINTACS and SINTACS P(RO) K(ARST) vulnerability assessment methods have been utilized here to create the vulnerability map. SINTACS P(RO) K(ARST) is an adaptation of the parametric managerial model (SINTACS) to karst hydrostructures. The vulnerability map reveals vast zones (81% of the analyzed areas) with a high degree of vulnerability. The presence of well-developed karst structures in these highly vulnerable areas facilitate water percolation, thereby enhancing the groundwater vulnerability risk. Only 1.5 of the studied aquifer have extremely high-vulnerability levels, however these areas include all of the major springs utilized for human consumption. This vulnerability map of the Sette Comuni Plateau aquifer is an indispensable tool for both the effective management of water resources and as support to environmental planning in the Sette Comuni Plateau area.  相似文献   

4.
The Abbotsford-Sumas Aquifer is a shallow, predominantly unconfined aquifer that spans regions in southwestern British Columbia, Canada and northwestern Washington, USA. The aquifer is prone to nitrate contamination because of extensive regional agricultural practices. A 22-month ground water nitrate assessment was performed in a 10-km2 study area adjacent to the international boundary in northwestern Washington to examine nitrate concentrations and nitrogen isotope ratios to characterize local source contributions from up-gradient sources in Canada. Nitrate concentrations in excess of 10 mg nitrate as nitrogen per liter (mg N L(-1)) were observed in ground water from most of the 26 domestic wells sampled in the study area, and in a creek that dissects the study area. The nitrate distribution was characteristic of nonpoint agricultural sources and consistent with the historical documentation of agriculturally related nitrate contamination in many parts of the aquifer. Hydrogeologic information, nitrogen isotope values, and statistical analyses indicated a nitrate concentration stratification in the study area. The highest concentrations (> 20 mg N L(-1)) occurred in shallow regions of the aquifer and were linked to local agricultural practices in northwestern Washington. Nitrate concentrations in excess of 10 mg N L(-1) deeper in the aquifer (> 10 m) were related to agricultural sources in Canada. The identification of two possible sources of ground water nitrate in northwestern Washington adds to the difficulty in assessing and implementing local nutrient management plans for protecting drinking water in the region.  相似文献   

5.
《环境质量管理》2018,27(4):79-86
The Seymour aquifer consists of unconfined outcrops of sand and gravel in a semiarid, agricultural region of north‐central Texas in the United States of America. Most water samples collected from the aquifer in 2015 had nitrate concentrations above the drinking water standard of 44.3 milligrams per liter (mg/L). Generally, areas with high nitrate concentration in 2010 remained high in 2015, although the median dropped by 3.9 mg/L. The largest decreases in nitrate concentration—up to 97 mg/L (60%)—were observed in wells with depths less than the median of 13.1 meters (m). However, other wells, including depths above and below the median, showed increases in nitrate concentration of up to 40 mg/L (42%). In 2015, chloride concentrations in six wells exceeded the secondary contaminant level of 250 mg/L, and one well had a chloride concentration of 1,810 mg/L. Past and ongoing agricultural practices, including cultivation of native grassland, application of fertilizer, and irrigation with nitrate‐contaminated groundwater, help sustain overall high nitrate concentrations within the aquifer. Local conditions governing nitrogen inputs and dilution result in significant improvement or worsening of the nitrate problem over relatively short timeframes. The pumping of groundwater from the aquifer may facilitate mixing with groundwater of increased salinity that has been affected by the dissolution of evaporites in underlying Permian bedrock.  相似文献   

6.
D epth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, and Conductivity of the aquifer). Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific, scale. Based upon data from variables such as soil permeability, depth to water, aquifer hydraulic conductivity, and topography, subjective numerical weightings have been assigned according to the variable's relative importance in regional groundwater quality. The weights for each variable comprise a GIS map layer. These map layers are combined to formulate the final groundwater pollution potential map. Using this method of investigation, the pollution potential map for the study area classifies 47% of the area as having low pollution potential, 26% as having moderate pollution potential, 22% as having high pollution potential, and 5% as having very high pollution potential.  相似文献   

7.
The 1991 EU Nitrate Directive was designed to reduce water pollution from agriculturally derived nitrates. England and Wales implemented this Directive by controlling agricultural activities within their most vulnerable areas termed Nitrate Vulnerable Zones. These were designated by identifying drinking water catchments (surface and groundwater), at risk from nitrate pollution. However, this method contravened the Nitrate Directive because it only protected drinking water and not all waters. In this paper, a GIS was used to identify all areas of groundwater vulnerable to nitrate pollution. This was achieved by constructing a model containing data on four characteristics: the quality of the water leaving the root zone of a piece of land; soil information; presence of low permeability superficial (drift) material; and aquifer properties. These were combined in a GIS and the various combinations converted into a measure of vulnerability using expert knowledge. Several model variants were produced using different estimates of the quality of the water leaving the root zone and contrasting methods of weighting the input data. When the final models were assessed all produced similar spatial patterns and, when verified by comparison with trend data derived from monitored nitrate concentrations, all the models were statistically significant predictors of groundwater nitrate concentrations. The best predictive model contained a model of nitrate leaching but no land use information, implying that changes in land use will not affect designations based upon this model. The relationship between nitrate levels and borehole intake depths was investigated since there was concern that the observed contrasts in nitrate levels between vulnerability categories might be reflecting differences in borehole intake depths and not actual vulnerability. However, this was not found to be statistically important. Our preferred model provides the basis for developing a new set of groundwater Nitrate Vulnerable Zones that should help England and Wales to comply with the EU Nitrate Directive.  相似文献   

8.
Few studies have documented spatial and temporal variations in ground water quality in areas with high densities of animal farming operations (AFOs), or the long-term effects on surface-water quality. Changes in ground water quality were characterized in an irrigated area with a high density of AFOs in southern Alberta, Canada to evaluate the effect on ground water quality of manure application to fields. Fifty-five piezometers in the oxidized zone were sampled once or twice annually from 1995 to 2001, and temporal changes were analyzed using mixed model analysis. Average NO3- -N increased significantly from 12.5 to 17.4 mg L(-1) and average Cl- increased significantly from 19.4 to 34.4 mg L(-1) in piezometers installed in an unconfined sand aquifer at locations receiving fertilizer and manure. Compared with these manured locations, nitrate and chloride concentrations were significantly lower in shallow aquifer water in areas of pasture or native range, and concentrations did not change significantly with time. Nitrate and chloride concentrations in shallow ground water in fine-textured manured locations did not change significantly. Ground water below about 6 m in till and fine lacustrine sediments contains 18O signatures indicative of recharge under preirrigation or glacially influenced conditions, suggesting this ground water has a low vulnerability to agricultural contamination. Evaluations suggest that shallow ground water discharge will cause NO3- -N and Cl- in the Oldman River to increase by factors of at least 4.3 and 1.3, respectively, with more significant effects in smaller streams and under low-flow conditions.  相似文献   

9.
Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty’s analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under “poor,” “moderate,” “good,” and “very good” groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.  相似文献   

10.
Compared with groundwater pollution episodes of a point-source nature, nonpoint-source contamination makes for particularly difficult policy design. This is especially true in the context of a mixed land-use aquifer, where the same pollutant may derive from various human land-use activities and in different concentrations. To data, the emprirical literature attempting to estimate the relative loadings of pollutants from alternative land uses is rather sparse. Yet this information is vital to a variety of numerical computer models used to predict likelihood of groundwater contamination, and the statistical results are useful in their own right for regional policy formation. Regression analysis is applied to estimate loadings of nitrate and sodium from various land uses. The model is then used to illustrate how well-intended local groundwater protection policies that fail to recognize land-use substitution and cross-pollutant effects may be misdirected.  相似文献   

11.
Statistical methods are widely used in environmental studies to evaluate natural hazards. Within groundwater vulnerability in particular, statistical methods are used to support decisions about environmental planning and management. The production of vulnerability maps obtained by statistical methods can greatly help decision making. One of the key points in all of these studies is the validation of the model outputs, which is performed through the application of various techniques to analyze the quality and reliability of the final results and to evaluate the model having the best performance. In this study, a groundwater vulnerability assessment to nitrate contamination was performed for the shallow aquifer located in the Province of Milan (Italy). The Weights of Evidence modeling technique was used to generate six model outputs, each one with a different number of input predictive factors. Considering that a vulnerability map is meaningful and useful only if it represents the study area through a limited number of classes with different degrees of vulnerability, the spatial agreement of different reclassified maps has been evaluated through the kappa statistics and a series of validation procedures has been proposed and applied to evaluate the reliability of the reclassified maps. Results show that performance is not directly related to the number of input predictor factors and that is possible to identify, among apparently similar maps, those best representing groundwater vulnerability in the study area. Thus, vulnerability maps generated using statistical modeling techniques have to be carefully handled before they are disseminated. Indeed, the results may appear to be excellent and final maps may perform quite well when, in fact, the depicted spatial distribution of vulnerability is greatly different from the actual one. For this reason, it is necessary to carefully evaluate the obtained results using multiple statistical techniques that are capable of providing quantitative insight into the analysis of the results. This evaluation should be done at least to reduce the questionability of the results and so to limit the number of potential choices.  相似文献   

12.
A susceptibility indexing method was developed based on vulnerability and quality indices. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability index (VI) and the quality index (QI): SI = VI × QI. This method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping. The DRASTIC index methodology was used for the hydrogeological data evaluations. The quality index calculation procedure based on a water quality classification scheme was introduced to evaluate hydrochemical data. The suggested susceptibility indexing method was applied to the Küçük Menderes river basin located in western Turkey. The susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is located along the river channel between Kiraz and Tire towns, in the Selçuk area and along the Fertek stream channel to the north of Torbal? town. The results indicate that the incorporation of both hydrogeological and hydrochemical datasets enables more realistic evaluations than those of an individual dataset to estimate the groundwater contamination susceptibility of an aquifer. The numerical procedure applied could be extended further by including other parameters such as retardation, potential contaminant sources, etc. that affect the water quality in a given basin.  相似文献   

13.
Industrial and agricultural activities often impose significant pressures to the groundwater quality and consequently degrade wetland ecosystems that depend mostly on subsurface water flow. Groundwater vulnerability and risk mapping is a widely used approach to assess the natural protection of aquifers and the associated pollution potential from human activities. In the particular study, the relatively new Pan-European methodology (COP method) has been applied in a highly industrialized peri-urban wetland catchment, located close to Athens city, to map the intrinsic vulnerability of the aquifer and evaluate the risk potential originating from local land uses. Groundwater analysis results for various parameters, including Phenols, PCBs and nutrients, have been used to validate the vulnerability and risk estimations while a biological assessment occurred to associate the mapping results with the wetland's ecological status. The results indicated that even though the natural protection of the aquifer is relatively high due to the dominant hydrogeologic and geomorphologic conditions, the groundwater pollution risk is considerable, mainly because of the existing hazardous land uses. The water quality of the groundwater accredited these findings and the ecological status of this peri-urban wetland also indicated significant impacts from industrial effluents.  相似文献   

14.
ABSTRACT: Effective monitoring configurations for contaminant detection in groundwater can be designed by analyzing the spatial relationships between candidate sampling sites and aquifer zones susceptible to contamination. Examples of such zones are the domain underlying the contaminant source, zones of probable contaminant migration, and areas occupied by water supply wells. Geographic information systems (GIS) are well-suited to performing key groundwater monitoring network design tasks, such as calculating values for distance variables which quantify the proximity of candidate sites to zones of high pollution susceptibility, and utilizing these variables to quantify relative monitoring value throughout a model domain. Through a case study application, this paper outlines the utility of GIS for detection-based groundwater quality monitoring network design. The results suggest that GIS capabilities for analyzing spatially referenced data can enhance the field-applicability of established methodologies for groundwater monitoring network design.  相似文献   

15.
In recent years, the significant improvement in point source depuration technologies has highlighted problems regarding, in particular, phosphorus and nitrogen pollution of surface and groundwater caused by agricultural non-point (diffuse) sources (NPS). Therefore, there is an urgent need to determine the relationship between agriculture and chemical and ecological water quality.This is a worldwide problem, but it is particularly relevant in countries, such as Hungary, that have recently become members of the European Community. The Italian Foreign Ministry has financed the PECO (Eastern Europe Countries Project) projects, amongst which is the project that led to the present paper, aimed at agricultural sustainability in Hungary, from the point of view of NPS. Specifically, the aim of the present work has been to study nitrates in Hungary's main aquifer. This study compares a model showing aquifer intrinsic vulnerability to pollution (using the DRASTIC parameter method; Aller et al. [Aller, L., Truman, B., Leher, J.H., Petty, R.J., 1986. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US NTIS, Springfield, VA.]) with a field-scale model (GLEAMS; Knisel [Knisel, W.G. (Ed.), 1993. GLEAMS—Groudwater Leaching Effects of Agricultural Management Systems, Version 3.10. University of Georgia, Coastal Plain Experimental Station, Tifton, GA.]) developed to evaluate the effects of agricultural management systems within and through the plant root zone. Specifically, GLEAMS calculates nitrate nitrogen lost by runoff, sediment and leachate.Groundwater monitoring probes were constructed for the project to measure: (i) nitrate content in monitored wells; (ii) tritium (3H) hydrogen radioisotope, as a tool to estimate the recharge conditions of the shallow groundwater; (iii) nitrogen isotope ratio δ15N, since nitrogen of organic and inorganic origin can easily be distinguished.The results obtained are satisfactory, above all regarding the DRASTIC evaluation method, which is shown to satisfactorily explain both low and high aquifer vulnerability, and furthermore proves to be a good tool for zoning hydrogeological regions in terms of natural system susceptibility to pollution. The GLEAMS model, however, proves not to be immediately usable for predictions, above all due to the difficulty in finding sufficient data for the input parameters. It remains a good tool, but only after an accurate validation, for decision support systems, in the specific case to integrate intrinsic vulnerability, from DRASTIC (or similar methods), with land use nitrate loads from GLEAMS, or similar methods.The PECO project has proved a positive experience to highlight the fundamental points of a decision support system, aimed to mitigate the nitrate risk for groundwater coming from Hungarian agricultural areas.  相似文献   

16.
ABSTRACT: The Attenuation Factor (AF), a screening model, was used to evaluate the relative degree of vulnerability of groundwater to pesticide contamination in Louisa County, Virginia. For evaluating the contamination potential of pesticides, three scenarios of pesticide leaching represented by high, moderate, and low cases of degradation and sorption in the soil were considered. Data layers were overlaid within a Geographic Information System (GIS) for spatial computation of AF for the actual and 2m groundwater depths. This spatial database was divided into five contamination potential categories namely high, medium, low, very low, and unlikely, based on the numerical values of the AF for each cell (119 ha). The results for the three most mobile pesticides are presented in this paper. The performance of the AF model was evaluated by comparing its predicted results with the field data from an experimental watershed. The AF model was able to identify most of the frequently detected pesticides in the watershed. A sensitivity analysis was also performed. The results of this study provide information about the potential groundwater threat by pesticides to the citizens ahd decision-makers in the County and can be used for formulating an appropriate land use management plan to protect the groundwater quality.  相似文献   

17.
Vulnerability assessment is considered an effective tool in establishing monitoring networks required for controlling potential pollution. The aim of this work is to propose a new integrated methodology to assess actual and forecasted groundwater vulnerability by including land-use change impact on groundwater quality. Land-use changes were simulated by applying a spatial dynamics model in a scenario of agricultural expansion. Groundwater vulnerability methodology DRASTIC-P, was modifyed by adding a land-use parameter in order to assess groundwater vulnerability within a future scenario. This new groundwater vulnerability methodology shows the areas where agricultural activities increase the potential level of groundwater vulnerability to pollution. The Dulce Creek Basin was the study case proposed for the application of this methodology. The study revealed that the area with Very High vulnerability would increase 20% by the year 2020 in the Dulce Creek Basin. This result can be explained by analyzing the land-use map simulated by the Dyna-CLUE model for the year 2020, which shows that the areas with increments in crop and pasture coincide with the area defined by the Very High aquifer vulnerability category in the year 2020. Through scenario analysis, land-use change models can help to identify medium or long term critical locations in the face of environmental change.  相似文献   

18.
Although groundwater is widely and increasingly exploited for potable water-supply in developing countries the threat of groundwater pollution has, as yet, received little attention. Activities currently producing the principal risks are described in some detail. A basis for rapid assessment of the degree of groundwater pollution risk is proposed, based on the evaluation of, and the interaction between, pollutant loading and aquifer vulnerability. Protection zones around individual groundwater supply sources can generally play, at most, only a minor role in overall policy. The strategy proposed is aquifer-oriented and activity-related. The evaluation of aquifer pollution vulnerability, made in the rapid risk assessment and based on three semi-independent criteria, could be used to select the required protection measures in relation to specific land-use activities.  相似文献   

19.
Probabilistic capture zones are combined with a regression model and used as buffer zones around wells for Tobit regression analysis to predict contaminant concentration of groundwater in an agricultural region. A backward transport equation, which is a mathematical model based on the physical processes of solute transport, is used to delineate probabilistic capture zones. The probabilistic capture zone defines the area where contaminant discharge can have a direct influence, with pertinent probability, on the quality of groundwater pumped from a well. Tobit regression analysis is used to find the relationship between independent regression variables and a dependent variable, which is contaminant concentration in this study. The capture zone and the regression are combined into a model, and its applicability for prediction of nitrate concentration is tested in a small agricultural basin in Chuncheon, Korea, which is occupied mainly by vegetation fields, orchards, and small barns. Three cases of Model 1, Model 2, and Model 3 are compared in which buffer zones are circles, capture zones with probability over 0.1, and capture zones divided into sections with different probabilities, respectively. The resulting regression model describes nitrate concentration in terms of selected independent variables. When the concentrations are calculated with the model, the best fit with the observed concentrations was in Model 3. This result supports the applicability of the method proposed in this study to prediction of contaminant concentration of groundwater.  相似文献   

20.
The City of Cedar Rapids obtains its municipal water supply from four well fields in an alluvial aquifer along the Cedar River in east-central Iowa. Since 1992, the City and the U.S. Geological Survey have cooperatively studied the groundwater-flow system and water chemistry near the well fields. The geochemistry in the alluvial aquifer near the Seminole Well Field was assessed to identify potentially reactive minerals and possible chemical reactions that produce observed changes in water chemistry. Calcite, dolomite, ferrihydrite, quartz, rhodochrosite, and siderite were identified as potentially reactive minerals by calculating saturation indexes. Aluminosiicate minerals including albite, Ca-montmorillonite, gibbsite, illite, K-feldspar, and kaolinite were identified as potentially reactive minerals using hypothetical saturation indexes calculated with an assumed dissolved aluminum concentration of 1 microgram per liter. Balanced chemical equations derived from inverse-modeling techniques were used to assess chemical reactions as precipitation percolates to the water table. Calcite dissolution was predominate, but aluminosilicate weathering, cation exchange, and redox reactions also likely occurred. Microbial-catalyzed redox reactions altered the chemical composition of water infiltrating from the Cedar River into the alluvial aquifer by consuming dissolved oxygen, reducing nitrate, and increasing dissolved iron and manganese concentrations. Nitrate reduction only occurred in relatively shallow (3 to 7 meters below land surface) groundwater near the Cedar River and did not occur in water infiltrating to deeper zones of the alluvial aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号