首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.  相似文献   

2.
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.  相似文献   

3.
The adsorption characteristics of heavy metals: Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions on tourmaline were studied. Adsorption equilibrium was established. The adsorption isotherms of all the four metal ions followed well Langmuir equation. Tourmaline was found to remove heavy metal ions efficiently from aqueous solution with selectivity in the order of Pb(Ⅱ)〉Cu(Ⅱ)〉Cd(Ⅱ)〉Zn(Ⅱ). The adsorption of metal ions by tourmaline increased with the initial concentration of metal ions increasing in the medium. Tourmaline could also increase pH value of metal solution.The maximum heavy metal ions adsorbed by tourmaline was found to be 78.86, 154.08, 67.25, and 66.67 mg/g for Cu(Ⅱ), Pb(U), Zn(Ⅱ) and Cd(U), respectively. The temperature (25-55℃) had a small effect on the adsorption capacity of tourmaline. Competitive adsorption of Cu(Ⅱ), Pb(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) ions was also studied. The adsorption capacity of tourmaline for single metal decreased in the order of Pb〉Cu〉Zn 〉Cd and inhibition dominance observed in two metal systems was Pb〉Cu, Pb〉Zn, Pb〉Cd, Cu〉Zn, Cu〉Cd, and Cd〉Zn.  相似文献   

4.
The effects of interaction between Bacillus subtilis DBM and soil minerals on Cu(Ⅱ)and Pb(Ⅱ)adsorption were investigated.After combination with DBM,the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of kaolinite and goethite improved compared with the application of the minerals independently.The modeling results of potentiometric titration data proved that the site concentrations of kaolinite and goethite increased by 80%and 30%,respectively after combination with DBM.However,the involvement of functional groups in the DBM/mineral combinations resulted in lower concentrations of observed sites than the theoretical values and led to the enhancement of desorption rates by NH_4NO_3 and EDTA-Na_2.The DBM-mineral complexes might also help to prevent heavy metals from entering DBM cells to improve the survivability of DBM in heavy metal-contaminated environments.During the combination process,the extracellular proteins of DBM provided more binding sites for the minerals to absorb Cu(Ⅱ)and Pb(Ⅱ).In particular,an especially stable complexation site was formed between goethite and phosphodiester bonds from EPS to enhance the Pb(Ⅱ)adsorption capacity.So,we can conclude that the DBM–mineral complexes could improve the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of minerals and protect DBM in heavy metal-contaminated environments.  相似文献   

5.
One purpose of this research is to present accumulation of cadmium (Cd) and copper (Cu) by female Oxya chinensis (Orthopera: Acridoidea) in a simulated soil-plant-insect ecosystem treated with Cd. Fourth-instar nymphs of O. chinensis had been fed on wheat (Triticurn aestivum) seedlings contaminated with Cd and Cu for one month. In the ecosystem, the Cd concentration in wheat seedlings rose greatly with the increasing of Cd in the soil, but the Cu concentration in wheat seedlings was not found elevated. There was a highly significant difference(P〈0.05) in Cd concentrations of wheat seedlings and not any significant difference(P〉0.05) in Cu concentrations of wheat seedlings. The Cd and Cu concentration in different body part-head, thorax, abdomen, and hind femur, varied under different Cd concentrations in soil. There were significant differences (P〈0.05) in the four parts of Cd and Cu accumulations with all treatments. The order of Cd accumulation was thorax 〉abdomen 〉head 〉hind femur and the Cu was abdomen 〉thorax 〉 head〉hind femur. The results indicated that Cd and Cu were accumulated from the soil to grasshoppers through the plant; that is to say, Cd and Cu in environment could be transported to animal or human via food chain.  相似文献   

6.
The absorption of Pb(Ⅱ) ions from aqueous solution by different alginate compounds was studied in a batch sorption system.Water soluble sodium alginate and insoluble calcium alginate beads were investigated.The lead-binding capacity of both alginate compounds was highest within the pH range 6-8.The binding capacities and rates of Pb(lI) ions by alginate compounds were evaluated.The Langmuir,Freundlich,and Bruneaur,Emmet and Teller (BET) sorption models were applied to describe the isotherms and isotherm ...  相似文献   

7.
8.
Effects of algae Nitzschia hantzschiana, Fe(Ⅲ) ions, humic acid, and pH on the photochemical reduction of Hg(Ⅱ) using the irradiation of metal halide lamps (λ 365 nm, 250 W) were investigated. The photoreduction rate of Hg(Ⅱ) was found to increase with increasing concentrations of algae, Fe(Ⅲ) ions, and humic acid. Alteration of pH value affected the photoreduction of Hg(Ⅱ) in aqueous solution with or without algae. The photoreduction rate of Hg(II) decreased with increasing initial Hg(Ⅱ) concentration in aqueous solution in the presence of algae. The photochemical kinetics of initial Hg(Ⅱ) and algae concentrations on the photoreduction of Hg(Ⅱ) were studied at pH 7.0. The study on the total Hg mass balance in terms of photochemical process revealed that more than 42% of Hg(Ⅱ) from the algal suspension was reduced to volatile metallic Hg under the conditions investigated.  相似文献   

9.
A typical Printed Circuit Board(PCB) manufacturer was chosen as the object of this study.During PCB processing, fine particulate matter and heavy metals(Cu, Zn, Pb, Cr, Cd and Ni)will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle(TSP), PM10 and PM2.5in the off-site were 106.3, 90.0 and 50.2 μg/m3, respectively, while the concentrations of TSP, PM10 and PM2.5in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to212.3 μg/m3, respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu 〉 Pb(Cr) 〉 Ni 〉 Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu(which ranged from 4.02 to 56.31 mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to0.078 mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10-6, except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry.  相似文献   

10.
The potential use of Myriophyllum spicatum L. biomass as a biosorbent for the removal of copper( Ⅱ ) from aqueous solution was investigated in laboratory condition. The sorption experiments were undertaken to obtain copper( Ⅱ ) biosorption properties of M. spicatum L., i.e. equilibrium time, the maximum capacity, and rate constants. Copper( Ⅱ ) biosorption was fast and equilibrium was attained within 35 min at initial copper( Ⅱ ) concentration of 6 mg/L. Different isotherm models including the Langmuir, Freundlich, Temkin and Redlich-Peterson model, were used to investigate the sorption capacity and isotherm. These models showed an excellent match with the experimental data except for the Freundlich model. According to the Langmuir coefficients, the maximum sorption capacity of copper onto M. spicatum L. was 10.80 mg/g. The kinetics of copper( Ⅱ ) sorption was also analysed and rate constants were derived. It was found that the overall sorption process was best described by the pseudo second-order equation, and that intraparticle diffusion was not the rate determining step. The results of this study showed that M. spicatum L. can be considered as useful vehicles for the removal and recovery of copper( Ⅱ ) from aqueous solutions.  相似文献   

11.
Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance of a plant to the stress of toxic metals. The endpoints include seed germination success, straightened radicle and hypocotyl of the seedlings from the seeds. The measurements could be done easily and accurately. It was found that the elongation of radicle was the most sensitive indicator to the stress of heavy metals among the endpoints. When exposure to lower or medium concentrations of Pb, Zn, and Cd, the development of the lateral roots were favorable. Species of S. rostrata was more tolerant than S. cannabina to the heavy metals, especially to Zn and Cd. The ED50 of Pb, Zn, Cu and Cd were 32.90, .5.32, 4.40 and 12.00 μg/ml for S. rostrata,respectively, and they were 30.11, 2.87, 4.0.5 and 4.94 μg/ml respectively for S. cannabina.  相似文献   

12.
Cadmium(Cd) and arsenic(As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar(HFMB), a novel ternary material,to perform this task, wherein scanning electron microscopy(SEM) combined with EDS(SEMEDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar(11.06 mg/g, 0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB, while ligand exchange was the adsorption mechanism that bound As(Ⅴ).  相似文献   

13.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

14.
Does copper reduce cadmium uptake by different rice genotypes?   总被引:4,自引:0,他引:4  
A hydroponics experiment was conducted to investigate the effect of copper (Cu) on cadmium (Cd), calcium (Ca), iron (Fe), and zinc (Zn) uptake by several rice genotypes. The experiment was carried out as a 2×2×4 factorial with four rice genotypes and two levels of Cu and Cd in nutrient solution. Plants were grown in a growth chamber with controlled environment. The results showed a significant difference between the biomass of different rice genotypes (P 〈 0.001). The Cd and Cu concentration in the solution had no significant effect on the biomass. The addition of Cu significantly decreased Cd uptake by shoots and roots of rice (P 〈 0.001). The Cd concentration did not significantly influence Ca uptake by plants, whereas the Cu concentration did (P = 0.034). There was a significant influence of Cd on Fe uptake by shoots and roots (P 〈 0.001, P = 0.003, respectively). Zn uptake decreased significantly as the addition of Cd and Cu increased in shoots. We concluded that Cu had significant influence on Cd uptake. The possible mechanisms were discussed.  相似文献   

15.
Removal of heavy metals from a contaminated soil using tartaric acid   总被引:9,自引:0,他引:9  
This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing remediation of the HM contaminated soil. An empirical model was employed to describe the kinetics of riM dissolution/desorption and to predict equilibrium concentrations of HMs in soil leachate. The changes of HMs in different fractions before and after tartaric acid treatment were also investigated. Tartaric acid solution containing HMs was regenerated by chestnut shells. Results show that utilization of tartaric acid was effective for removal of riMs from the contaminated soil, attaining 50%-60% of Cd, 40%-50% of Pb, 40%-50% of Cu and 20%-30% of Zn in the pH range of 3.5-4.0 within 24 h. Mass transfer coefficients for cadmium (Cd) and lead (Pb) were much higher than those for copper (Cu) and zinc (Zn). Sequential fractionations of treated and untreated soil samples showed that tartaric acid was effective in removing the exchangeable, carbonate fractions of Cd, Zn and Cu from the contaminated soil. The contents of Pb and Cu in Fe-Mn oxide fraciton were also significantly decreased by tartaric acid treatment. One hundred milliliters of tartaric acid solution containing HMs could be regenerated by 10 g chestnut shells in a batch reactor. Such a remediation procedure indicated that tartaric acid is a promising agent for remediation of HM contaminated soils. However, further research is needed before the method can be practically used for in situ remediation of contaminated sites.  相似文献   

16.
Mg–Al–Cl layered double hydroxide(Cl-LDH) was prepared to simultaneously remove Cu(Ⅱ)and Cr(VI) from aqueous solution. The coexisting Cu(Ⅱ)(20 mg/L) and Cr(VI)(40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(Ⅱ) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(Ⅱ) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(Ⅱ) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(Ⅱ)(200 mg/L) and Cr(VI)(400 mg/L). The affecting factors(such as solution initial p H, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of p H values and the concentrations of Mg~(2+) and Al~(2+)in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl-in Cl-LDH interlayer, isomorphic substitution of Mg~(2+) with Cu~(2+), formation of Cu_2Cl(OH)_3precipitation, and the adsorption of Cr(VI) by Cu_2Cl(OH)_3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

17.
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com...  相似文献   

18.
Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process   总被引:13,自引:0,他引:13  
Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced.  相似文献   

19.
Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study, the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rfamong the tested soils. The adsorption sequences were Cr〉Pb〉Cu〉Cd〉Zn〉Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.  相似文献   

20.
Based on the determination of several trace elements in coal particulate of different specific gravity, three-variables regression equations relate the contents of trace elements Be, Cd, Co, Pb, Cu, Ni, As and three species of sulfur in coal were well established. For elements Cd, Co, Pb, Cu and Ni, the regression equations were successfully used for prediction of these trace elements in individual part of coal with different specific gravity. Factor analysis was also used to analyze the data sets. The results showed that a three factor model can interpret the data sets reasonably. Trace elements Cd, Co, Pb, Cu, Ni, inorganic sulfide and total sulfur in coal are high correlated with the first factor. Trace elements Be, sulfate and organic sulfide are high correlated with the second factor and trace elements Cr and As are high correlated with the third factor. The factors can be interpreted by the chemical properties of these elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号