首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The radioactivity concentrations of (226)Ra, (232)Th and (40)K were measured by using gamma ray spectroscopy in 130 concrete building blocks collected from block making sites in eight cities in Southwestern Nigeria. The results were used to compute the radium equivalent activity concentration for each city. The values of the concentrations of the primordial radionuclides varied widely within each city and among the cities. The weighted means for the cities range between 13.3 and 18.4, 28.2 and 71.6, and 176.2 and 336.8 Bq/kg for (226)Ra, (232)Th and (40)K, respectively. The city weighted means of radium equivalent activity concentrations for the eight cities range from 81 to 145 with a mean of 101 Bq/kg. The maximum for external hazard index was determined as 0.39. All the values are within the safety limits recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation 1982. Report to the General Assembly, with annexes. New York, United Nations.].  相似文献   

2.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

3.
This paper reports on radon concentrations in dwellings from fifty different locations of India. The incorporated data were obtained using the passive solid state nuclear track detector technique. The estimated geometric mean value for India is 67.1 Bq m(-3). Chuadanga in Bangladesh had the lowest observed indoor radon concentration of 27.3 Bq m(-3) and Una in the northern part of India had the highest concentration of 281.5 Bq m(-3). This paper discusses the national geometrical mean value in terms of the national geometric mean values of other countries and also in terms of the geological influence. The estimated indoor radon levels are compared with the indoor radon levels as recommended by the International Commission on Radiation Protection (ICRP). It was observed that there are several locations in India where dwellings have higher indoor radon levels than the ICRP recommended value and requires some sort of intervention from regulating authorities. The mean value for indoor radon level given in the report of UNSCEAR 2000 for India needs to be revised.  相似文献   

4.
Thirty-two samples of concrete building blocks were collected from different block making industries in Ibadan. The radioactivity concentrations of the natural radionuclides in the samples were determined by gamma-ray spectrometry with a NaI(Tl) detector. The radioactivity concentrations varied from 6.2 to 57.5 Bq kg(-1), 12.4 to 64.9 Bq kg(-1) and 95.3 to 766.1 Bq kg(-1) for 226Ra, 232Th and 40K, respectively. The radium equivalent activities of the 32 samples varied from 51.3 to 175.7 Bq kg(-1). Radiation exposure levels in 30 dwellings were determined using LiF thermoluminescent dosimeters. The annual equivalent dose rates varied from 0.318 to 0.657 mSv y(-1) with a mean of 0.433 mSv y(-1). The annual effective dose rate to the whole body was calculated as 0.236 mSv y(-1), which is less than that (mean) estimated by UNSCEAR for normal background areas.  相似文献   

5.
Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.  相似文献   

6.
Indoor radon survey and gamma activity measurements in soil samples were carried out in the Giresun province (Northeastern Turkey). The result of analysis of variance showed a relationship between indoor radon and radium content in soil (R(2)=0.54). It was found that indoor radon activity concentration ranged from 52 to 360 Bq m(-3) with an average value of 130 Bq m(-3). A model built by BEIR VI was used to predict the number of lung cancer deaths due to indoor radon exposure. It was found that indoor radon is responsible for 8% of all lung cancer deaths occurring in this province. (137)Cs activity concentration was measured 21 years after the Chernobyl accident. The results showed that (137)Cs activity concentration ranged from 41 to 1304 Bq kg(-1) with an average value of 307 Bq kg(-1). The indoor radon results and the geology of the studied area were discussed. Annual effective doses to the both radionuclides of natural origin and (137)Cs were estimated.  相似文献   

7.
The purpose of this study was to investigate radon in the vicinity of geologic fault zones within the Krakow region of Poland, and to determine the influence of such formations on enhanced radon concentrations in soil. Radon ((222)Rn and (220)Rn) concentration measurements in soil gas (using ionization chamber AlphaGUARD PQ2000 PRO and diffusion chambers with CR-39 detectors), as well as radioactive natural isotopes of radium, thorium and potassium in soil samples (using gamma ray spectrometry with NaI(Tl) and HPGe detectors), were performed. Site selection was based on a geological map of Krakow. Geophysical methods (ground penetrating radar and shallow acoustic seismic) were applied to recognize the geological structure of the area and to locate the predicted courses of faults. Elevated levels of radon and thoron in soil gas were found in the study area when compared with those observed in an earlier survey covering Krakow agglomeration. For (222)Rn, the arithmetic mean of registered concentration values was 39 kBq/m(3) (median: 35.5 kBq/m(3)). For (220)Rn, the arithmetic mean was 10.8 kBq/m(3) and median 11.8 kBq/m(3).  相似文献   

8.
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.  相似文献   

9.
The WHO Regional Office for Europe organized a working group in Dubrovnik, Yugoslavia, on 26–30 August 1985, which discussed radon as a pollutant affecting indoor air quality. Much of the natural background radiation to which the general public is exposed comes from the decay of 226Ra which produces radon gas and other products. Because radium is a trace element in most rock and soil, indoor concentrations of radon can come from a wide variety of substances, such as building materials and the soil under building foundations. Tap water taken from wells or underground springs may be an additional source. Radon daughter concentrations are considerably higher indoors than outdoors and are of the order of 2–5 Bq m−3 equilibrium equivalent radon (EER) concentration. It has been estimated that current exposure to radon gas could account for as much as 5–15% of all lung cancer deaths. It was recommended that, in general, buildings with concentrations of more than 100 Bq m−3 EER, as an annual average, should be considered for remedial action to lower such concentrations if simple measures are possible.  相似文献   

10.
The aim of the study was to compare radon concentrations in neighbouring hospital buildings which were constructed in different years during the period 1963-2000 and are located in areas with similar radon potential. The value of arithmetic mean (AM) radon concentration in soil gas amounted to 14,464 Bq m(-3). In a hospital built 40 years ago, the AM radon concentration in the cellar was 38.4+/-36.7 Bq m(-3) and on higher levels it was 17.1+/-10.3 Bq m(-3). In a hospital built 16 years ago, these values equaled 45.5+/-47.2 Bq m(-3) and 20.4+/-12.5 Bq m(-3), respectively. In the newest hospital, built three years ago, radon concentration (AM) in a cellar was 32.3+/-27.4 Bq m(-3) and the respective value on higher levels amounted to 20.4+/-12.6 Bq m(-3). When comparing radon concentrations in the cellars, no statistically significant differences were found. Similarly, no statistically significant differences were observed between radon concentrations measured on higher levels in investigated hospital buildings.  相似文献   

11.
Radon levels were measured in 119 groundwater samples collected throughout the active volcanic area of Mt. Etna by means of a portable Lucas-type scintillation chamber. The measured activity values range from 1.8 to 52.7 Bq l(-1). About 40% of the samples exceed the maximum contaminant level of 11 Bq l(-1) proposed by the USEPA in 1991. The highest radon levels are measured in the eastern sector of the volcano, which is the seismically most active zone of the volcano. On the contrary the south-western sector, which is both seismically active and a site of intense magmatic degassing, display lower radon levels. This is probably due to the formation of a free gas phase (oversaturation of CO(2)) that strips the radon from the water. Comparison of the data gathered at Mt. Etna with those of other areas indicates that (222)Rn activity in groundwater is positively correlated with both the content of parent elements in the aquifer rocks and the temperature of the geothermal systems that interacts with the sampled aquifers.  相似文献   

12.
Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series.  相似文献   

13.
The present study was conducted to characterize the Technically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) waste generated from oil and gas production. The waste was characterized by means of dry screening solid fractionation, X-ray analysis (XRF and XRD) and gamma-ray spectrometry. Sediment of the TE-NORM waste was fractionated into ten fractions with particle sizes varying from less than 100 microm to more than 3 mm. The results showed that the TE-NORM waste contains mainly radionuclides of the 238U, 235U and 232Th series. The mean activity concentrations of 226Ra (of U-series), 228Ra (of Th-series) and 40K in the waste samples before fractionation (i.e. 3 mm) were found to amount to 68.9, 24 and 1.3 Bq/g (dry weight), respectively. After dry fractionation, the activity concentrations were widely distributed and enriched in certain fractions. This represented a 1.48 and 1.82-fold enrichment of 226Ra and 228Ra, respectively, in fraction F8 (2.0-2.5 mm) over those in bulk TE-NORM waste samples. The activity ratios of 238U/226Ra, 210Pb/226Ra, 223Ra/226Ra and 228Ra/224Ra were calculated and evaluated. Activity of the most hazardous radionuclide 226Ra was found to be higher than the exemption levels established by IAEA [International Atomic Energy Agency, 1994. International Basic Safety Standards for the Protection against Ionizing Radiation and for the Safety of Radiation Sources. GOV/2715/94, Vienna]. The radium equivalent activity (Ra-eq), radon (222Rn) emanation coefficient (EC) and absorbed dose rate (Dgammar) were estimated and these are further discussed.  相似文献   

14.
Samples of phosphate fertilizers and farm soils, taken to a depth of up to 30 cm in cultivated land, were collected over the Qena governorate, Upper Egypt. Activity concentration of background radionuclides such as (226)Ra, (232)Th and (40)K of these samples were determined by gamma-ray spectrometry. The results show that these radionuclides were present in concentrations of 366+/-10.5, 66.7+/-7.3 and 4+/-2.6 Bq/kg for phosphate fertilizers. For farm soil and Nile island's soil the corresponding values were 13.7+/-7, 12.3+/-4.6, 1233+/-646 and 11.9+/-6.7, 10.5+/-6.1, 1636+/-417 Bq/kg, respectively. The radium equivalent activity (Ra(eq)), the representative level index, I(gamma r), and absorbed dose in air for all samples were calculated. The data were discussed and compared with those given in the literature.  相似文献   

15.
Several types of bottled drinking water originating from three different areas in Egypt are studied through measurement of radium activity, assessment of related annual dose for adults and finally to define the role of water quality on radium levels. The mean levels of (226)Ra activity range from 0.44 to 0.92 Bq/L and the mean levels of (228)Ra from 0.30 to 0.78 Bq/L, with related (226)Ra/(228)Ra ratios ranging from 2.61 to 0.56. Water types originating from the Eastern Nile Delta area are characterized by low (226)Ra levels and relatively high (228)Ra activity, presumably due to the muddy agricultural nature of this area, which is subject to water from several surface resources for irrigation. In general, the mean activity levels for both (226)Ra and (228)Ra are within those in drinking water in several other countries and the annual ingested dose is comparable with the typical range reported by UNSCEAR. Also, the effect of TDS, pH, calcium, bicarbonate, sulphate and chloride ion concentrations on radium levels is studied and discussed.  相似文献   

16.
The 137Cs inventories in undisturbed soils were measured for 292 locations across the territory of Vietnam. The logarithmic inventory values were regressed against characteristics of sampling sites, such as geographical coordinates, annual rainfall and physico-chemical parameters of soil. The regression model containing latitude and annual rainfall as determinants could explain 76% of the variations in logarithmic inventory values across the territory. The model part was interpreted as the logarithmic 137Cs deposition density. At the 95% confidence level, 137Cs deposition density could be predicted by the model within +/- 7% relative uncertainty. The latitude mean 137Cs deposition density increases northward from 237 Bq m(-2) to 1097 Bq m(-2), while the corresponding values derived from the UNSCEAR (1969) global pattern are 300 Bq m(-2) and 600 Bq m(-2). High 137Cs inputs were found in high-rainfall areas in northern and central parts of the territory.  相似文献   

17.
The concentrations and distribution of gamma-ray emitting isotopes in Burullus Lake were investigated with the aim of evaluating the environmental radioactivity. Particularly in wetlands, natural properties of the environment can cause the actual inventory to be different from the activity originally deposited. The mean concentrations of (226)Ra, (232)Th and (40)K were 14.3, 15.5 and 224 Bq/kg, respectively, in the coastal soils. On the other hand, soil samples from the islands had mean concentrations of 13.5, 17.4 and 341 Bq/kg for (226)Ra, (232)Th and (40)K, respectively. Samples from coast and islands show evidence of possible transfer and accumulation of the (137)Cs radionuclide. The mean (137)Cs activity concentrations in the soil samples were 1.2 and 15.1 Bq/kg in the coast and islands, respectively. The vertical migration of (137)Cs was studied based on its content in the consequently located three soil layers down to 30 cm depth. The radium equivalent, dose rate in air and annual dose equivalent from the terrestrial natural gamma-radiation were evaluated. The mean activity concentrations of the gamma-ray emitting radionuclides in vegetation were relatively low.  相似文献   

18.
Studies were made during 1990-1997 on the transfer of 137Cs from soil to vegetation (herbage) and to grazing lambs on a mountain farm with an uncultivated grazing area of about 10 km2. The farm is situated in an area in Northern Sweden which was contaminated by the Chernobyl fallout in 1986. The mean concentration of 137Cs in the soil to a depth of 10 cm for eight sampling sites observed in the 8-year period was 14.51 kBq/m2, while in the cut herbage the average concentration was 859 Bq/kg d.w. and in lamb meat 682 Bq/kg w.w. A slow vertical migration of 137Cs in the 0-10 cm soil layer was indicated. Although the 137Cs concentration in herbage gradually decreased, the concentration in lamb meat varied from year to year. Soil ingestion by the lambs as a pathway for activity transfer was shown to be negligible, while ingestion of fungi with high concentrations of 137Cs was demonstrated to occur, as large numbers of fungi spores were counted in samples of the lambs' faeces. Fungi ingestion might therefore partly explain the varying mean yearly 137Cs concentrations in lamb muscle. The mean transfer parameters were as follows: for "soil to herbage" 61.3 Bq/kg d.w. herbage per kBq/m2 soil, for "herbage to lamb meat" 0.81 Bq/kg w.w. meat per Bq/kg d.w. herbage, and for "soil to lamb meat" 47.1 Bq/kg w.w. meat per kBq/m2 soil. A trend of decreasing values of the transfer parameter for "soil to herbage" indicated that 137Cs was becoming less available for root-uptake with time. The effective ecological half-life of 137Cs in soil, herbage and lamb meat was calculated to be 19, 7 and 16 years, respectively. It can be concluded that natural areas are vulnerable to 137Cs contamination, resulting in high concentrations in plants, fungi and lamb meat for a long time.  相似文献   

19.
The paper presents the results of indoor radon concentration survey in 201 homes and offices in Niska Banja (the Spa of Nis), a well-known health resort and a spa in the South-East of Serbia. Radon indoor concentrations were determined by active charcoal method, according to standard EPA procedure. The indoor radon concentrations were in the range of up to 200 Bq/m(3) (47%), from 200-600 Bq/m(3) (26%) and over 600 Bq/m(3) (27%). Three areas of extremely high average radon concentrations were found (1,340-4,340 Bq/m(3)), with a maximum above 13,000 Bq/m(3). The content of natural radionuclides ((226)Ra, (214)Pb, (214)Bi, (235)U, (228)Ac, (212)Pb, (212)Bi, (208)Tl, (40)K) and (137)Cs, as well as the content of total uranium, thorium and potassium in mud used in peloidotherapy in the Health Institute "Niska Banja" was determined, too. The activities of the radionuclides were determined on an HPGe detector, by standard gamma spectroscopy. The results indicated considerably high amounts of total uranium and thorium (0.021 g/kg mud and 0.003 g/kg mud, respectively), due to the karsts origin of the soil.  相似文献   

20.
A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号