首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hong Kong once supported more than 109 species of wild orchids, of which approximately 30% were endemic. Most of the local wild orchids have now become rare or endangered. I conducted a comparative study of genetic diversity in two closely related terrestrial orchids, an allotetraploid, Spiranthes hongkongensis , and its diploid progenitor, S. sinensis , to assess the effects of the population bottleneck associated with the origin of the polyploid and to investigate the relationships between number of breeding individuals, mating system, and level of isozyme variation in their populations. Nearly complete genetic uniformity was observed both within and among populations of S. hongkongensis . In contrast, S. sinensis had high levels of genetic variation for all of the genetic parameters examined. Regression analysis of population size and several components of genetic diversity in S. sinensis revealed that, among various measures of within-population variation, the proportion of polymorphic loci ( P ) and average number of alleles per locus ( A ) or per polymorphic locus ( A p ) were the most sensitive to population size ( R 2 = 0.942, p = 0.001; R 2 = 0.932, p = 0.002; and R 2 = 0.923, p = 0.002 respectively). The highly negative correlation ( r = −0.999, p < 0.01) between population size and the mean frequency of private alleles in pairwise population comparisons, p (1), indicated that population size may also be used to predict the extent of population differentiation caused by random genetic drift. Conservation of genetic diversity in S. sinensis could be maximized by protecting several of both large and small populations, whereas fewer populations may be needed to achieve this goal for S. hongkongensis.  相似文献   

2.
Abstract:  A joint demographic and population genetics stage-based model for a subdivided population was applied to Gentiana pneumonanthe , an early successional perennial herb, at a regional (metapopulation) scale. We used numerical simulations to determine the optimal frequency of habitat disturbance (sod cutting) and the intensity of gene flow among populations of G. pneumonanthe to manage both population viability and genetic diversity in this species. The simulations showed that even small populations that initially had near-equal allele frequencies could, if managed properly through sod cutting every 6 to 7 years, sustain their high genetic variation over the long run without gene flow. The more the allele frequencies in the small populations are skewed, however, the higher the probability that in the absence of gene flow, some alleles will be lost and within-population genetic variation will decrease even under proper management. This implies that although local population dynamics should be the major target for management, regional dynamics become important when habitat fragmentation and decreased population size lead to the loss of local genetic diversity. The recommended strategy to improve genetic composition of small populations is the introduction of seeds or seedlings of nonlocal origin.  相似文献   

3.
Planktonic populations of the calanoid copepod Labidocera aestiva show significant biochemical genetic heterogeneity along the Atlantic coast of the USA. In summer, 1981, copepods were collected by surface tows at Beaufort Inlet, North Carolina; Fort Pierce Inlet, Florida; and Vineyard Sound, Massachusetts. Genetic variation within each population and genetic differentiation among the three populations were studied by micro-acrylamide gel electrophoresis of six loci encoding four enzymes. All six enzyme loci were polymorphic when all populations were considered together, but the North Carolina population was monomorphic at two loci. High genetic variability was indicated by the following: (1) the number of alleles per locus averaged over all loci was 2.57±0.26 SD; (2) the average proportion of loci for which the frequency of the most common allele was not greater than 0.95 was 0.78±0.10; (3) the frequency of heterozygous individuals was 0.25±0.07. Genetic differentiation among population samples in the three regions was demonstrated in several ways: allele frequencies at one aminopeptidase-I locus, Lap-1, differed significantly among samples of the three populations, and there were unique alleles of high frequency at this locus in two population samples. Values of the statistic of genetic distance (D) averaged 0.20±0.08 for pairwise comparisons between all samples. Compared to expected heterozygosity if individuals across the entire range sampled mated at random, there were highly significant heterozygote deficiencies at five of the six loci. Genetic differentiation of populations of L. aestiva may result from (1) differential selection on populations in the three regions, or (2) restricted gene flow between the populations. Gene flow may be limited by geographic separation or differences in life history, such as seasonal presence in the plankton and diapause egg production.Contribution No. 5810 of Woods Hole Oceanographic Institution  相似文献   

4.
The amount of genetic variation in the rare perennial herb Gentiana pneumonanthe L. was determined to explore its relation to population size. Differences in isozyme variation between maternal plants and their offspring were used to investigate the relationship between population size and outcrossing rate. In 25 populations in The Netherlands, differing in size from 1 to more than 50,000 flowering individuals, 16 allozyme loci were analyzed on leaves of maternal plants and offspring grown in a greenhouse. Population size was significantly positively correlated with the proportion of polymorphic loci, but only marginally with heterozygosity and the mean effective number of alleles. Most of the studied populations were characterized by a complete absence of rare alleles, and F -statistics suggest relatively high levels of genetic differentiation among populations and thus a low level of gene flow. Leaf samples (maternal) were mostly in Hardy-Weinberg equilibrium, while several offspring samples showed an excess of homozygotes, which suggests selection favoring heterozygotes. Because most small populations consist only of adult survivors from formerly larger populations, this may partly explain the absence of a clear relationship between genetic variation of the maternal plants and population size. A significant positive correlation was found between the level of cross-fertilization and population size. From these results, we conclude that, to some degree, small populations have a reduced level of genetic variation, while their present isolation in nature reserves has resulted in a very limited interpopulational gene flow level. At present a higher level of inbreeding in small populations contributes to a further loss of genetic variation and may also result in reduced offspring fitness.  相似文献   

5.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

6.
We analyzed the amount and distribution of genetic variation in Baptisia arachnifera Duncan to develop a sampling strategy for ex situ research. Baptisia arachnifera is an endangered plant species endemic to the coastal plain of Georgia (U.S.) where all populations are within 16 km of each other. A reduction in numbers of individuals has been observed during the last 50 years. Baptisia arachnifera was polymorphic at 24% of the 37 loci examined with an average of 1.32 alleles per locus. The genetic diversity index was relatively low ( He = 0.097) as expected for endemic species. Populations were in Hardy-Weinberg equilibrium, suggesting that the species is outcrossing. Consistent with this conclusion is the observation that the majority (approximately 90%) of the genetic variation present in the species is found within individual populations. Indirect evidence of gene flow between populations was detected (   Nm = 2.35). The close proximity of the populations and the recent reduction in population sizes suggest that the populations surveyed may be fragments of a once more continuous gene pool. Based on the observed distribution of genetic diversity among populations (GST = 0.096), sampling two populations would capture 99% of the allozyme diversity surveyed. Allozyme data were used to determine which 2 of the 10 populations surveyed should be sampled to maximize the ex situ conservation of genetic diversity. Although the paper-producing companies that own most of the land where Baptisia arachnifera occurs are modifying their harvesting techniques, the species could become extinct without more effective management and preservation efforts.  相似文献   

7.
Abstract: The endangered Hawaiian monk seal breeds at six locations in the northwestern Hawaiian Islands. To determine whether significant genetic differentiation exists among these sites, we used microsatellite loci to examine the monk seal population structure at the five largest breeding colonies. Of 27 loci isolated from other seal species, only 3 were polymorphic in an initial screening of one individual from each breeding site. Only two alleles were found at each of these 3 loci in samples of 46–108 individuals. This extremely low variation is consistent with other measures of genetic variability in this species and is probably the result of a recent severe population bottleneck, combined with a long-term history of small population sizes. Although the smallest monk seal subpopulation in this study ( Kure Atoll) showed some evidence of heterozygote deficit, possibly indicative of inbreeding, the next smallest ( Pearl and Hermes Reef) had an apparent excess of heterozygous individuals. Genetic differentiation was detected between the two subpopulations at extreme ends of the range ( Kure and French Frigate Shoals). This trend was significant only at the microsatellite locus for which we had the largest sample size ( Hg6.3: R ST = 0.206, p = 0.002; allelic goodness of fit G h = 15.412, p < 0.005). French Frigate Shoals is the source population for translocated animals that have been released primarily at Kure Atoll. Differentiation between these sites consisted of allele frequency differences (with the same allele predominant in each location at all three loci), rather than the preservation of alternative alleles. Although the translocations have had positive demographic effects, we recommend continued genetic monitoring of both the source and recipient populations because translocated individuals are now entering the breeding population.  相似文献   

8.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

9.
Abstract: We used microsatellite DNA markers to investigate the maintenance of genetic diversity within and between samples of subpopulations (spanning five captive-bred generations) of the haplochromine cichlid Prognathochromis perrieri . The subpopulations are maintained as part of the Lake Victoria Cichlid species survival plan. Changes in the frequencies of 24 alleles, over four polymorphic loci, were used to estimate effective population size (   N e   ). Point estimates of N e ranged from 2.5 to 7.7 individuals and were significantly smaller than the actual census size (   N obs  ) for all subpopulations (32–243 individuals per generation), with the corresponding conservative N e   /  N obs ratios ranging from 0.01 to 0.12. Approximately 19% of the initial alleles were lost within the first four generations of captive breeding. Between-generation comparisons of expected heterozygosity showed significant losses ranging from 6% to 12% per generation. Seven private alleles were observed in the last sampled generation of four subpopulations, and analysis of population structure by F ST indicated that approximately 33% of the total genetic diversity is maintained between the subpopulations from different institutions. To reduce the loss of genetic variation, we recommend that offspring production be equalized by periodically removing dominant males, which will encourage reproduction by additional males. Consideration should also be given to encouraging more institutions to maintain populations, because a significant fraction of the genetic variation exists as among-population differences resulting from random differentiation among subpopulations.  相似文献   

10.
The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the general purpose phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.  相似文献   

11.
The genetic relationships between morphologically indistinguishable marine and brackish-water populations of Monocelis lineata (O.F. Müller, 1774) (Proseriata: Monocelididae) were analysed by means of allozyme electrophoresis. Fifteen samples of M. lineata (13 from the Mediterranean and two from the Atlantic) from coastal marine and brackish-water habitats were examined for variation at 18 loci. Eleven loci were polymorphic in at least one population of M. lineata. Low levels of within-population genetic variability were found, with average observed and expected heterozygosity values ranging from Ho=0.015±0.015 to 0.113±0.044, and from He=0.028±0.028 to 0.138±0.054, respectively. The occurrence of a number of private alleles indicated a marked genetic divergence among populations of M. lineata, with Rogers genetic distances ranging from DR=0.003 to 0.676 and a highly significant FST value (0.918±0.012, P<0.001). UPGMA (unweighted pair-group method using arithmetic average) cluster analysis and multidimensional scaling showed a clear genetic divergence between marine and brackish-water populations. Moreover, Atlantic and Mediterranean populations were sharply separated. Our results suggest that M. lineata is a complex of sibling species.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

12.
Genetic diversity, population differentiation, and temporal variation in outcrossing rates were examined for Pithecellobium elegans , a Neotropical rain forest canopy tree. Several forest fragments and a large reserve (1500 ha) were compared for several population genetic parameters. For eight populations sampled on the Atlantic coastal plain of Costa Rica, allozyme heterozygosity (0.13), polymorphism (35%), and effective number of alleles (1.24) were similar to values reported for other tropical tree species that occur at similar densities of less than one individual per hectare. These measures of genetic variation were lowest in populations of the smallest size, farthest from the reserve, and more isolated from other populations. Differentiation among samples collected in small forest fragments and the reserve population accounted for 10% of the total genetic variation observed. There was a positive relationship between the level of differentiation of populations from the reserve population and their distance from the reserve. Though predominantly an annually flowering species, the number of trees in flower at any one time varied from 80% of observed trees to only 6%. Outcrossing rates did not differ for two episodes in which the proportions of flowering trees were 33% and 80%. But periods of low density of flowering adults resulted in poor seed crops or failure to set fruit for many individuals. Population size at many sites will be effectively decreased because of the variation in flowering. Fragmentation of what was once a large, continuous forested area is resulting in genetic erosion of small, isolated populations of Pithecellobium elegans .  相似文献   

13.
Four populations of the predatory gastropodNucella lapillus were sampled at sites around the South West Peninsula of England in 1986, and analysed for allozyme variation at 18 enzyme loci. Two of these loci, Gpd-1 andHk-1, exhibited sex-specific phenotypes. An absolute locus association was observed between two other loci,Mdh-1 andEst-3. This association was only found at one site (Prawle), and it is suggested that the presence of chromosomal polymorphisms could explain this finding. As a measure of overall similarity, Nei's genetic identity statistic,I, was calculated; the mean for all populations was 0.989, with values ranging from 0.981 to 0.997. Although similar on this gross level, considerable interpopulation variation was evident. Observed mean heterozygosity (per locus) ranged from 0.043 to 0.104 (mean 0.074). Populations differed also in the loci at which significant heterozygote deficits were seen (of the seven deficits recorded only those at thePep-1 locus were consistent across sites) and in the presence of rare alleles undetected elsewhere. The variation observed showed no correlation to shell morphology or geographical distance and confirmed the conclusion that species of the genusNucella show considerable disjunct variation.  相似文献   

14.
Abstract: Starch-gel electrophoresis was used to screen 101 bison from Badlands National Park, South Dakota, for variation at 24 genetic loci. The population was descended from founder groups of about 6 and 3 individuals, separated geographically for a minimum of 64 years. The purpose of this study was (1) to estimate levels of genic variability in this bison population, (2) to assess the extent to which descendents of the two founder groups differ genetically, and (3) to compare the genetic characteristics of the Badlands population with other bison populations. The Badlands herd was found to be polymorphic for only a single locus (MDH–1). Descendents of the founder groups were homogeneous with respect to allelic and genotypic frequencies at this locus. The MDH–1 polymorphism has not been observed in other bison populations, while several polymorphism reported in other bison populations were not detected in the Badlands herd. A mean heterozygosity of 0.012 was observed in the Badlands herd; this value is lower than that typically reported for mammals, though not as low as heterozygosities seen in other populations that have passed through severe bottlenecks in size. These results underscore the need for genetic data in planning breeding programs for species in captivity or managed in isolate reserves.  相似文献   

15.
Genetic variation at the mannosephosphate isomerase (MPI) locus was examined in the euryhaline sibling species Gammarus zaddachi Sexton and G. salinus Spooner. Both crustacean amphipods share identical enzyme mobilities, following electrophoresis on vertical starch gels. The MPI locus turned out to be highly polymorphic; it is encoded by 6 alleles in G. zaddachi and 7 alleles in G. salinus. Geographic variation of allelic diversity was studied in samples from 9 G. zaddachi and 10 G. salinus populations, primarily obtained from Baltic Sea and North Sea sites. Patterns of inter- and intraspecific heterogeneity are described. Differences in allelic composition exist between Baltic and North Sea samples of G. salinus. In G. zaddachi, levels of polymorphism are higher in North Sea populations than in those from Baltic Sea areas. The significance of these findings is discussed in the light of previous biochemical genetic investigations on the population structure of the two amphipods considered.  相似文献   

16.
Allozyme electrophoresis was used to characterize genetic variation within and among natural populations of the red sea urchin Strongylocentrotus franciscanus. In 1995 to 1996, adult urchins were sampled from twelve geographically separated populations, seven from northern California and five from southern California (including Santa Rosa Island). Significant population heterogeneity in allelic frequencies was observed at five of six polymorphic loci. No geographic pattern of differentiation was evident; neighboring populations were often more genetically differentiated than distant populations. Northern and southern populations were not consistently distinguishable at any of the six loci. In order to assess within-population genetic variation and patterns of recruitment, large samples were collected from several northern California populations in 1996 and 1997, and were divided into three size classes, roughly representing large adults (>60 mm), medium-sized individuals (31 to 60 mm, “subadults”) and individuals <2 yr of age (≤30 mm test diam, referred to as “recruits”). Comparisons of allelic counts revealed significant spatial and temporal differentiation among size-stratified population samples. Recruit samples differed significantly from adult samples collected at the same locale, and showed extensive between-year variation. Genetic differentiation among recruit samples was much higher in 1997 than in 1996. Between-year differences within populations were always greater for recruits than for adults. Potential explanations for the differentiation of recruit samples include pre- and post-settlement natural selection and high interfamily variance in reproductive success or “sweepstakes” recruitment. Unless recruit differentiation can be attributed to an improbable combination of strong and spatially diverse selection, such differentiation across northern California populations indicates that the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration. Received: 6 July 1999 / Accepted: 25 January 2000  相似文献   

17.
The genetic relationships between morphologically indistinguishable marine and brackish populations of Syllis gracilis Grube, 1840 (Polychaeta: Syllidae) were studied by means of allozyme electrophoresis. Samples of S. gracilis from marine coastal and brackish-water habitats were examined for variation at 13 presumptive loci. In addition, a sample of the closely related species S. prolifera (Krohn, 1852) was analysed. Five loci were multiallelic in at least one population of S. gracilis and eight loci in S. prolifera. Low to moderate levels of within-population genetic variability were found, with average expected heterozygosity values ranging from H = 0.068 (±0.043 SE) to 0.187 (±0.069 SE) in the populations of S. gracilis; higher values were found in S. prolifera (H = 0.325 ± 0.076). The presence of various private alleles indicated a marked genetic divergence among populations of S. gracilis, with Nei's genetic distances ranging from D = 0.000 to 0.833 and a highly significant F ST value. Furthermore, evidence for strong genetic heterogeneity between two sympatric marine populations was found. UPGMA cluster analysis and multidimensional scaling pointed out a clear genetic divergence between brackish and marine populations. At least two genetically divergent entities occurred in marine and brackish habitats. This could be due to local adaptation of individuals coming from marine populations to brackish habitats, but more presumably to the occurrence of a species complex within S. gracilis. Received: 6 June 1999 / Accepted: 7 February 2000  相似文献   

18.
Abstract: Swayne's hartebeest ( Alcelaphus buselaphus swaynei ) is an endangered antelope that survives in four or five relict populations in Ethiopia. We examined the two main populations (Senkele and Nechisar) for mitochondrial (D-loop) and nuclear (microsatellite) variability in order to measure levels of genetic variation within the subspecies and degree of differentiation between populations. For comparison, we examined samples from a large population of red hartebeest ( Alcelaphus buselaphus caama ). Both swaynei and caama exhibited high levels of variation. There was significant differentiation between the populations of swaynei at Senkele and Nechisar, and gene diversity in Nechisar, the smaller of the two populations, was significantly lower than that in Senkele. Many mitochondrial haplotypes and microsatellite alleles present at high frequencies among the Senkele individuals were missing in Nechisar, suggesting that the translocation of animals from Senkele undertaken in 1974 did not contribute notably to the gene pool in Nechisar. Subsamples taken from Senkele in 1988 and 1995 showed a significant change in allele frequencies, a change that probably can be attributed to a massive population decline during this period. We recommend that both populations be protected in situ to maintain as much as possible of the diversity that exists within the taxon and that a breeding program be established. In spite of the earlier unsuccessful attempt, we argue that translocation of animals for enhancement of population size as well as genetic variation in Nechisar should be considered.  相似文献   

19.
Gene Flow and Genetic Restoration: The Florida Panther as a Case Study   总被引:5,自引:0,他引:5  
Populations of some endangered species have become so small that they have lost genetic variation and appear to have become fixed for deleterious genetic variants. To avoid extinction from this genetic deterioration individuals from related subspecies or populations may have to be introduced for genetic restoration i.e., elimination of deleterious variants and recovery to a normal level of genetic variation. I construct a general population genetics framework from which to evaluate the potential for genetic restoration, and I discuss its specific application to the Florida panther. The translocation of Texas cougars into the free-ranging Florida panther population has been recommended to genetically restore the Florida panther, a subspecies of Felis concolor that appears to have both a low level of genetic variation and low fitness. Specific recommendations recently given by a scientific panel are to introduce enough animals so that there is approximately 20% gene flow in the first generation of translocation and approximately 2–4% in the generations thereafter. I evaluated these recommendations in a theoretical population genetics framework and found that they should result in the removal of most detrimental genetic variation and an increase in the standing genetic variation without a high probability of loss of any adaptive Florida panther alleles. Unless the population of the free-ranging Florida panthers is very small, the planned translocation should result in genetic restoration of the Florida panther.  相似文献   

20.
Cladophora rupestris is a perennial filamentous macroalga belonging to the Chlorophyta. It is widely distributed on both sides of the northern Atlantic Ocean and penetrates into the brackish Baltic Sea down to ca. 4 psu salinity. In this paper we present evidence for genetic differentiation of a Baltic form of this marine alga. We assessed genetic structure within and among 11 populations ranging along a salinity gradient from the Norwegian coast to the northern Baltic Sea proper. Samples of 328 individuals were studied using starch-gel protein electrophoresis to evaluate genetic variability and interpopulation differentiation based on allozymes. Of 11 loci examined, only one was polymorphic. For this locus, encoding superoxide dismutase (SOD-3), a total of seven alleles were distinguished. We found two genetically differentiated groups of populations of C. rupestris, one Baltic Sea group and one North Sea group, with a distinct border in the southern Kattegat near the entrance to the Baltic Sea. The genetic differentiation for SOD-3, expressed as pairwise FST values between the populations, was generally higher within the Baltic Sea group (0.10-0.43) than within the North Sea group (0.05-0.10); in the latter group also fewer pairs of populations differed significantly. Pairs of populations from different groups had the highest FST values (0.20-0.60). Hierarchical analysis of variance showed that 29.6% of the total variation in the SOD-3 locus was explained by variation between the two groups, while only 4.2% was explained by variation among the populations within the groups. The remaining variation (66.2%) was found within the populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号