首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of gamma-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 degrees x5 degrees grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it can also be adapted to provide characteristic travel distances and overall environmental persistence, which can be compared with other long-range transport prediction methods.  相似文献   

2.
The incentives and approaches for modelling chemical fate at a continental scale are discussed and reviewed. It is suggested that a multi-media model consisting of some 20-30 regions, each of which contains typically seven environmental compartments represents a reasonable compromise between the issues of the need for detailed resolution, avoidance of excessive data demands and inherent complexity and transparency. Strategies adopted in compiling the Berkley-Trent (BETR) model for North America are discussed and used to illustrate the issues of selecting appropriate number and nature of segments, treatment of air and water flows and the acquisition of environmental data. It is suggested that GIS software can play a valuable role in gathering and processing such data and in the display and interpretation of the results of the model assessment. The BETR model will be a useful tool for describing the nature of persistence and long-range transport of chemicals of concern in the North American environment.  相似文献   

3.
Transfer efficiency (TE) is introduced as a model output that can be used to characterize the relative ability of chemicals to be transported in the environment and deposited to specific target ecosystems. We illustrate this concept by applying the Berkeley-Trent North American contaminant fate model (BETR North America) to identify organic chemicals with properties that result in efficient atmospheric transport and deposition to the Laurentian Great Lakes. By systematically applying the model to hypothetical organic chemicals that span a wide range of environmental partitioning properties, we identify combinations of properties that favor efficient transport and deposition to the Lakes. Five classes of chemicals are identified based on dominant transport and deposition pathways, and specific examples of chemicals in each class are identified and discussed. The role of vegetation in scavenging chemicals from the atmosphere is assessed, and found to have a negligible influence on transfer efficiency to the Great Lakes. Results indicate chemicals with octanol-water (K(ow)) and air-water (K(aw)) partition coefficients in the range of 10(5)-10(7) and 10(-4)-10(-1) combine efficient transport and deposition to the Great Lakes with potential for biaccumulation in the aquatic food web once they are deposited. A method of estimating the time scale for atmospheric transport and deposition process is suggested, and the effects of degrading reactions in the atmosphere and meteorological conditions on transport efficiency of different classes of chemicals are discussed. In total, this approach provides a method of identifying chemicals that are subject to long-range transport and deposition to specific target ecosystems as a result of their partitioning and persistence characteristics. Supported by an appropriate contaminant fate model, the approach can be applied to any target ecosystem of concern.  相似文献   

4.
We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15° × 15° grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).  相似文献   

5.
The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for alpha-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute alpha-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates.  相似文献   

6.
7.
Tracing sources of atmospheric sulphur using epiphytic lichens   总被引:2,自引:0,他引:2  
The overall objective of this work was to measure the spatial variation of sulphur isotopic composition of lichens across the island of Newfoundland in order to assess the degree to which the atmosphere is being affected by long-range transport of anthropogenic sulphur from eastern North America, and/or local pollution sources. A contour map (based on over 80 composite samples of the lichen Alectoria sarmentosa) illustrates the spatial distribution of sulphur isotopic composition of the Newfoundland atmosphere. It shows a gradient of delta(34)S of sulphur in lichen, decreasing from the coast to the interior of the island. It also shows local anomalies corresponding to the city of St. John's, the Come-By-Chance Oil Refinery, mining areas and fossil-fuel powered pulp and paper mills in central and western Newfoundland. The study strongly suggests that the isotopic composition of sulphur in the Newfoundland atmosphere is influenced more by the ocean (sea salt sulphate) and local anthropogenic activities in the province, than by long-range transport of continental North American sulphate.  相似文献   

8.
This paper evaluates the contribution of (i) uncertainty in substance properties, (ii) lack of spatial variability, (iii) intermodel differences and (iv) neglecting sorption to black carbon (BC) to the uncertainty of Benzo[a]pyrene (BaP) concentrations in European air, soil and fresh water predicted by the multi-media fate model Simplebox. Uncertainty in substance properties was quantified using probabilistic modeling. The influence of spatial variability was quantified by estimating variation in predicted concentrations with three spatially explicit fate models (Impact 2002, EVn BETR and BETR Global). Intermodel differences were quantified by comparing concentration estimates of Simplebox, Impact 2002, EVn BETR and the European part of BETR Global. Finally, predictions of a BC-inclusive version of Simplebox were compared with predictions of a BC-exclusive version. For air concentrations of BaP, the lack of spatial variability in emissions was most influential. For freshwater concentrations of BaP, intermodel differences and lack of spatial variability in dimensions of fresh water bodies were the dominant sources of uncertainty. For soil, all sources of uncertainty were of comparable magnitude. Our results indicate that uncertainty in Simplebox can be as large as three orders of magnitude for BaP concentrations in the environment and would be substantially underestimated by focusing on one source of uncertainty only.  相似文献   

9.
Background, Aim and Scope Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances. Materials and Methods Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, α and γ-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world. Results and Discussion Compartmental distributions in steady state were compared. Steady state needed 2–10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial variabilities of these parameters. Therefore, the long-range transport potential in air derived from MCTM simulations exceeds the one from Chemrange in most cases and least for substances which undergo slow degradation in air. Conclusions and Perspectives MBMs should be improved such as to ascertain that the significance of the atmosphere for the multicompartmental cycling is not systematically underestimated. Both types of models should be improved such as to cover degradation in air in the particle-bound state and transport via ocean currents. A detailed understanding of the deviations observed in this work and elsewhere should be gained and multimedia fate box models could then be ‘tuned in’ to match better the results of comprehensive multicompartmental transport models. ESS-Submission Editor: Prof. Dr. Michael Matthies (matthies@uos.de)  相似文献   

10.
Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts.  相似文献   

11.
Levoglucosan is considered as a useful molecular tracer of biomass-burning aerosols in the atmosphere. To characterize the seasonal variation of its concentrations over the Pacific Ocean and to assess its usefulness as a tracer after long-range transport, we investigated long-term variations of levoglucosan over Chichi-jima in the western North Pacific, from 2001 to 2004. Organic carbon (OC), elemental carbon (EC) and d-glucose were analyzed for comparison. The seasonal variation of levoglucosan concentrations showed a maximum in the winter, which is consistent with the enhanced Asian outflow to the Pacific indicated by backward air-mass trajectories. The concentration levels of levoglucosan estimated from global aerosol model outputs in the winter are, on average, comparable to the observed levels, suggesting that a considerable fraction of levoglucosan did not decompose during long-range transport from the Asian continent by westerly/northwesterly winds. This result is supported by comparable ratios of levoglucosan to EC in Chichi-jima and the East Asian coastal region. Conversely, the measured concentrations of levoglucosan in the summer were significantly lower than the modeled one. This implies a degradation of levoglucosan in the air masses that stagnated over the Pacific, although uncertainties in the model estimate may also be partly responsible for this discrepancy. One possible degradation pathway is oxidation by OH radicals; the contribution of acid-catalyzed reactions needs further investigation.  相似文献   

12.
BACKGROUND: Export to the deep sea has been found to be a relevant pathway for highly hydrophobic chemicals. The objective of this study is to investigate the influence of this process on the potential for long-range transport (LRT) of such chemicals. METHODS: The spatial range as a measure of potential for LRT is calculated for seven PCB congeners with the multimedia fate and transport model ChemRange. Spatial ranges for cases with and without deep sea export are compared. RESULTS AND DISCUSSION: Export to the deep sea leads to increased transfer from the air to the surface ocean and, thereby, to lower spatial ranges for PCB congeners whose net deposition rate constant is similar to or greater than the atmospheric degradation rate constant. This is fulfilled for the PCB congeners 101, 153, 180, and 194. The spatial ranges of the congeners 8, 28, and 52, in contrast, are not affected by deep sea export. With export to the deep sea included in the model, the spatial ranges of the heavier congener are similar to those of the lighter ones, while the intermediate congeners 101 and 153 have the highest potential for long-range transport. CONCLUSIONS: Transfer to the deep ocean affects the mass balance and the potential for LRT of highly hydrophobic chemicals and should be included in multimedia fate models containing a compartment for ocean water.  相似文献   

13.
Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust episode”). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were “activated” as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which “desert” is designated to be the only land-cover category that can emit wind-blown dust.  相似文献   

14.
Measurement of untransformed (p,p'- and o,p'-) DDT in rain, snow, and peat indicates that input of “new” DDT continues over a large portion of eastern North America. Peat cores obtained from ombrotrophic bogs indicate that current atmospherically derived fluxes are about 10–20% of those which occurred during peak DDT usage (~1960). Since DDT has been banned in North America and considering the magnitude of present fluxes, these residues must result from atmospheric transboundary transport. It is suggested that “new” DDT is being transported from neighboring areas where current use is substantial, Mexico and Central America.  相似文献   

15.
Levels and trends of brominated flame retardants in the Arctic   总被引:24,自引:0,他引:24  
de Wit CA  Alaee M  Muir DC 《Chemosphere》2006,64(2):209-233
Polybrominated diphenyl ethers (PBDEs) containing two to seven bromines are ubiquitous in Arctic biotic and abiotic samples (from zooplankton to polar bears (Ursus maritimus) and humans; air, soil, sediments). The fully brominated decabromodiphenyl ether (BDE-209), hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA) and polybrominated biphenyls (PBBs) are also present in biotic and abiotic samples. Spatial trends of PBDEs and HBCD in top predators are similar to those seen for polychlorinated biphenyls (PCBs) and indicate western Europe and eastern North America as source regions. Concentrations of tetra- to heptaBDEs have increased significantly in North American and Greenlandic Arctic biota and in Greenland freshwater sediments paralleling trends seen further south. For BDE-209, increasing concentrations in Greenlandic peregrine falcons (Falco peregrinus) and in dated lake sediment cores in the Canadian Arctic have been seen during the 1990s. BDE-47, -99, -100 and -153 are observed to biomagnify in Arctic food webs. summation operatorPBDE concentrations in Arctic samples are lower than in similar sample types from more southerly regions and are one or more orders of magnitude lower than summation operatorPCB concentrations except for some levels for air. Air and harbor sediment results for PBDEs indicate that there are local sources near highly populated areas within the Arctic. Findings of PBBs on moss and TBBPA on an air filter, and that both are found in biota at high trophic levels indicates that these compounds may also reach the Arctic by long-range atmospheric transport. Based on the evidence of their presence in the Arctic and indications that most if not all are undergoing long-range transport, these brominated flame retardants (BFRs) have characteristics that qualify them as POPs according to the Stockholm Convention.  相似文献   

16.
Evaluating the environmental fate of atrazine in France   总被引:12,自引:0,他引:12  
S. Bintein  J. Devillers 《Chemosphere》1996,32(12):2441-2456
Atrazine is used in large quantities in U.S. and European countries as a weed-control agent. As a result, numerous data on its environmental fate and hazards have been published. Analysis of the literature shows that this herbicide can be found with appreciable concentrations in groundwaters, rivers, lakes, and estuaries. This contamination principally results from leaching and runoff processes. Atrazine can also pollute fog and rain due to its release into the atmosphere through spray applications. This large amount of information constitutes a very attractive basis for assessing the simulation performances of environmental fate models. In this context, CHEMFRANCE, a regional fugacity model level III which calculates the environmental distribution of organic chemicals in twelve defined regions of France has been used to estimate the environmental fate of atrazine. The calculated values are comparable with field and laboratory results. Therefore, CHEMFRANCE can be considered as a useful tool for simulating the environmental fate of this agrochemical.  相似文献   

17.
The atmospheric fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas–particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5–8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl4–5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.  相似文献   

18.
We have added the capability to simulate polychlorinated biphenyls (PCBs) and polychlorinated dibenzo [p] dioxins and polychlorinated dibenzo-furans (PCDD/Fs) to the Community Multiscale Air Quality (CMAQ) modeling system, thus taking advantage of the latter's capability to simulate atmospheric advection, diffusion, gas-phase chemistry, cloud/precipitation, and aerosol processes. The modifications reported here include the addition to the CMAQ system of two gas/particle partitioning models options: the Junge–Pankow adsorption model and the KOA absorption model, as well as chemical transformations and atmosphere/water surface exchange processes for these semi-volatile organics. Simulations for the purpose of model testing and validation were conducted for the years 2000 and 2002 on a domain covering most of North America. Both partitioning models give reasonable results when compared with available measurements. The model predictions of deposition and air concentrations also agree well with measurements. The modeling results also indicate that the long-range transport is important and anthropogenic emissions of PCBs and PCDD/Fs are dominant although surface exchange of PCBs may be important for some clean locations.  相似文献   

19.
The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification.  相似文献   

20.
As a consequence of the global distribution of manufacturing sites and the increasing international division of labour, ship traffic is steadily increasing and is becoming more and more important as an origin of air pollution.This study investigates the impact of ship emissions in coastal areas of the North Sea under conditions of the year 2000 by means of a regional chemistry transport model which runs on a sufficiently high resolution to study air pollution in coastal regions. It was found that northern Germany and Denmark in summer suffer from more than 50% higher sulphate, nitrate and ammonium aerosol concentrations due to contributions from ships. The implementation of a sulphur emission control area (SECA) in the North Sea, as it was implemented at the end of 2007, directly results in reduced sulphur dioxide and sulphate aerosol concentrations while nitrate aerosol concentrations are slightly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号