首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   

2.
按诊断与推荐综合系统(DRIS)标准建立的常规方法.通过比较低产和高产组叶片N、P、K、Ca、Mg养分含量以及两元素间的养分比和养分积,初步筛选出N/P、N/K、N/Ca、N/Mg、K/P、Ca/P、P/Mg、K/Ca.K/Mg和Ca/Mg作为DRIS参项,并初步提出紫花芒果DRIS诊断标准.  相似文献   

3.
研究光照强度对1年生喀斯特特有植物罗甸小米核桃幼苗可塑性的影响,探讨其在个体定居初期如何响应不同光照强度的变化及其生态适应策略.设置约为自然光100%、75%、50%和25%的光照强度处理材料,4个月后收获,比较分析罗甸小米核桃幼苗的形态、生物量分配和生理性状在不同光照强度处理下的差异,并对可塑性指标进行综合评价.结果表明,在中度光强(50%自然光照)下,植物采取增加高度,增大叶面积,增加各部位(根茎叶)的生物量分配,提高叶绿素含量、光合作用,促进游离脯氨酸含量积累和超氧化物歧化酶(SOD)活性来综合调控,此时的丙二醛(MDA)积累量最低、为34.77 nmol/g,说明植物在这种光照强度下适应性最强.其次为高光强(75%自然光照)下,植物的以上各功能性状表现也能达到良好状态.此外,在低光强(25%自然光照)下,植物也具有较高的比叶面积、光合参数等性状.综合看植物各可塑性指标(0.06-0.52),生物量分配>生理性状>形态性状,且根冠比与过氧化物酶(POD)活性可塑性指数最大、分别为0.52和0.51,叶片厚度与SOD活性最小、分别为0.08和0.06.综上所述,在个体定居初期,喀斯特特有植物罗甸小米核桃幼苗各形态、生物量分配和生理性状响应光照强度的敏感程度及调控机制存在明显差异,仅在全光下诱导植物出现明显的抑制表型性状外,在高中低光强下均能灵活地塑造其自身性状来协同维持植物正常生长发育,具有的光照幅较广和可塑性强的特点可能是保证其稳定生存在这种喀斯特高度异质性生境的两个重要原因.(图4表3参42)  相似文献   

4.
Most genetic surveys of captive and endangered populations are carried out with single gene characters bearing no direct relationship to life history or other features for which genetic variation needs to be maintained. Quantitative genetic estimates of heritable variation for life-history traits may be a more direct and appropriate measure of genetic variation for some conservation purposes. Furthermore, recent theoretical and empirical results indicate that genetic variation measured on these two levels may not be concordant. We analyzed heterozygosity at 41 allozyme loci and heritability for body weight in captive cotton-top tamarins ( Saguinus oedipus ) from the Marmoset Research Center of the Oak Ridge Associated Universities in order to compare these two levels of genetic variation. Cotton-top tamarins are a highly endangered species native to Colombia. Many animals currently reside in research facilities and zoological parks. A total of 106 animals were used in the isozyme survey, while data on 364 animals contributed to the quantitative genetic study of body weight. We found a very low average heterozygosity ( H = 1%) for this colony. Body weight was moderately and significantly heritable ( h 2 = 35%). This heritability is within the normal range for natural animal populations. The finding of biologically significant levels of heritability in a population with abnormally low allozyme heterozygosity illustrates the point that low levels of allozyme heterozygosity should not be taken as an indication of overall lack of genetic variation in important quantitative characters such as life-history traits. Genetic variation required for adaptation of species to future environmental challenges can exist despite low levels of enzyme heterozygosity.  相似文献   

5.
Food availability is expected to influence the relative cost of different mating tactics, but little attention has been paid to this potential source of adaptive geographic variation in behavior. Associations between the frequency of different mating tactics and resource availability could arise because tactic use responds directly to food intake (phenotypic plasticity), because populations exposed to different average levels of food availability have diverged genetically in tactic use, or both. Different populations of guppies (Poecilia reticulata) in Trinidad experience different average levels of food availability. We combined field observations with laboratory “common garden” and diet experiments to examine how this environmental gradient has influenced the evolution of male mating tactics. Three independent components of variation in male behavior were found in the field: courtship versus foraging, dominance interactions, and interference competition versus searching for mates. Compared with low-food-availability sites, males at high-food-availability sites devoted more effort to interference competition. This difference disappeared in the common garden experiment, which suggests that it was caused by phenotypic plasticity and not genetic divergence. In the diet experiment, interference competition was more frequent and intense among males raised on the greater of two food levels, but this was only true for fish descended from sites with low food availability. Thus, the association between interference competition and food availability in the field can be attributed to a genetically variable norm of reaction. Genetically variable norms of reaction with respect to food intake were found for the other two behavioral components as well and are discussed in relation to the patterns observed in the field. Our results indicate that food availability gradients are an important, albeit complex, source of geographic variation in male mating strategies.  相似文献   

6.
A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions.  相似文献   

7.
Abstract: The maintenance of genetic variation within populations is expected to allow species to respond to evolutionary challenges such as selection and environmental stress. Larger populations are generally expected to maintain larger amounts of genetic variation. Although several studies have found a positive relationship between population size and levels of genetic variation for molecular markers such as allozymes, few comparisons have been made between molecular measures of variation and genetic variation that is likely to be ecologically important. Most ecologically important traits require quantitative genetic analyses. I examined the relationship between levels of genetic variation and population size for both allozymes and morphological traits in a California endemic annual plant, Clarkia dudleyana . Levels of genetic variation for allozymes did not show a significant positive relationship with population size. The level of genetic variance for all of the 18 morphological traits exhibited no significant relationship with population size. Further, allozyme heterozygosities were not related to levels of quantitative genetic variation. These results indicate that levels of allozyme variability do not predict levels of genetic variation for morphological traits in C. dudleyana , suggesting that molecular measures of variation, in general, differ from quantitative genetic measures. These results imply that conservation genetic studies should generally focus on aspects other than measuring levels of genetic variation found within populations.  相似文献   

8.
Abstract: Climate change affects individual organisms by altering development, physiology, behavior, and fitness, and populations by altering genetic and phenotypic composition, vital rates, and dynamics. We sought to clarify how selection, phenotypic plasticity, and demography are linked in the context of climate change. On the basis of theory and results of recent empirical studies of plants and animals, we believe the ecological and evolutionary issues relevant to population persistence as climate changes are the rate, type, magnitude, and spatial pattern of climate‐induced abiotic and biotic change; generation time and life history of the organism; extent and type of phenotypic plasticity; amount and distribution of adaptive genetic variation across space and time; dispersal potential; and size and connectivity of subpopulations. An understanding of limits to plasticity and evolutionary potential across traits, populations, and species and feedbacks between adaptive and demographic responses is lacking. Integrated knowledge of coupled ecological and evolutionary mechanisms will increase understanding of the resilience and probabilities of persistence of populations and species.  相似文献   

9.
Many species of sedentary marine invertebrates exhibit large spatial variation in their morphology, which allow them to occupy a broad geographic distribution and range of environmental conditions. However, the detection of differences in morphology amongst variable environments cannot determine whether these differences represent a plastic response to the local environment, or whether morphology is genetically fixed. We used a reciprocal transplant experiment to test whether ‘stunted’ blacklip abalone (Haliotis rubra) are the result of a plastic response to the environment or fixed genetic trait. Furthermore, we related environmental factors, that affect food availability (density of abalone, water movement, algal cover and reef topography), to differences in growth and morphology. Morphological plasticity was confirmed as the mechanism causing morphological variation in H. rubra. Individuals transplanted to sites with ‘non-stunted’ H. rubra grew significantly faster when compared to stunted controls, whilst individuals transplanted to stunted sites grew significantly slower compared to non-stunted controls. The growth response was greater for individuals transplanted from ‘non-stunted’ to ‘stunted’ sites, suggesting that the environmental stressors in morphologically ‘stunted’ habitat are stronger compared to locations of faster growing morphology. We propose that these differences are related to resource availability whereby low algal cover and topographic simplicity results in stunted populations, whereas high algal abundance and topographic complexity results in non-stunted populations.  相似文献   

10.
Phenotypic plasticity may evolve when conditions vary temporally or spatially on a small enough scale. Plasticity is thought to play a central role in the early stages of evolutionary transitions, including major transitions such as those between non-sociality and sociality. The sweat bee Halictus rubicundus is of special interest in this respect, because it is socially plastic in the British Isles: Nests are social or non-social depending on the environment. However, sociality comprises a complex suite of inter-related traits. To further investigate social plasticity in H. rubicundus, we measured traits that are potentially integral to social phenotype at a northern site, where nests are non-social, and a southern site where nests can be social. We found that foundresses at non-social sites were smaller, produced offspring of a size more similar to themselves, initiated nesting later, and took longer to produce their first female offspring. They began provisioning earlier in the day, finished earlier, and collected more pollen loads. Common garden experiments suggested that these differences represent mainly plasticity, as expected for traits involved in the overall plastic social phenotype, with only limited evidence for fixed genetic differences in foraging. Conditions during overwintering did not have major effects on a foundress' subsequent behaviour.  相似文献   

11.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

12.
The skeletal Mg/Ca ratio of echinoderms is known to increase with temperature but the relation has never been established in controlled experimental conditions. The present study investigated the effect of temperature, salinity and growth rate on Mg/Ca and Sr/Ca ratios in calcite skeletons of juvenile sea urchins grown in experimental conditions. Mg/Ca ratio was positively related to temperature, increasing until a plateau at high but field occurring temperatures. It was not linked to salinity nor growth rate. We suggest that this plateau is due to properties of the organic matrix of mineralization and recommend to take it into account for the use of Mg/Ca as proxy of seawater Mg/Ca. Skeletal Sr/Ca ratio was mainly dependent on temperature and growth rate, as usually observed in calcite skeletons.  相似文献   

13.
以504份云南地方稻核心种质为材料,在昆明自然低温平均18℃(冷害)和新平27℃(正常)条件下进行孕穗期耐冷性状的表犁多样性生态差异分析.结果表明:(1)在3种生态环境下,云南稻核心种质11个耐冷性状的平均值、标准差、变异系数等参数存在一定差异,总趋势呈现籼稻(Indica)不同环境间这3个特征值差异较粳稻(Japonica)明显;弱耐冷系统群差异较强耐冷系统群明显.(2)不同环境间11个耐冷性状Shannon-weaver遗传多样性指数存在明显差异,体现为正常环境高于冷害环境,粳稻(Japonica)高于籼稻(Indica),强耐冷材料高于弱耐冷材料.这种差异主要由剑叶长、穗颈长、穗下节长、1~2节长、穗长、主穗实粒数和结实率等7个耐冷性状差异所致.  相似文献   

14.
The impact of calcium (Ca) and magnesium (Mg) on the growth and morphology of a Charophyte, Nitella pseudoflabellata, and the influence of Mg on calcification and phosphorous (P) speciation were studied in laboratory experiments for variable concentrations (≤q120 mg · L?1) of Ca and Mg. It was clearly identified that Mg aided shoot elongation. An increase in Ca concentrations produced intensified shoot elongation also, but at a lesser rate than the equivalent levels of Mg. Depending on the availability of Ca and Mg, the morphological appearance differed significantly, suggesting significant levels of ecoplasticity. Furthermore, Mg was observed to produce less calcite encrustation. Plant P-speciation suggested a higher Mg concentration corresponding to a more water-soluble and less carbonate-bound P fraction. This indicates that upon senescence and decomposition, a large fraction of P is supplied to the water column; ultimately behaving similar to a typical vascular plant.  相似文献   

15.
Knowledge of leaf chemistry, physiology, and life span is essential for global vegetation modeling, but such data are scarce or lacking for some regions, especially in developing countries. Here we use data from 2021 species at 175 sites around the world from the GLOPNET compilation to show that key physiological traits that are difficult to measure (such as photosynthetic capacity) can be predicted from simple qualitative plant characteristics, climate information, easily measured ("soft") leaf traits, or all of these in combination. The qualitative plant functional type (PFT) attributes examined are phylogeny (angiosperm or gymnosperm), growth form (grass, herb, shrub, or tree), and leaf phenology (deciduous vs. evergreen). These three PFT attributes explain between one-third and two-thirds of the variation in each of five quantitative leaf ecophysiological traits: specific leaf area (SLA), leaf life span, mass-based net photosynthetic capacity (Amass), nitrogen content (N(mass)), and phosphorus content (P(mass)). Alternatively, the combination of four simple, widely available climate metrics (mean annual temperature, mean annual precipitation, mean vapor pressure deficit, and solar irradiance) explain only 5-20% of the variation in those same five leaf traits. Adding the climate metrics to the qualitative PFTs as independent factors in the model increases explanatory power by 3-11% for the five traits. If a single easily measured leaf trait (SLA) is also included in the model along with qualitative plant traits and climate metrics, an additional 5-25% of the variation in the other four other leaf traits is explained, with the models accounting for 62%, 65%, 66%, and 73% of global variation in N(mass), P(mass), A(mass), and leaf life span, respectively. Given the wide availability of the summary climate data and qualitative PFT data used in these analyses, they could be used to explain roughly half of global variation in the less accessible leaf traits (A(mass), leaf life span, N(mass), P(mass)); this can be augmented to two-thirds of all variation if climatic and PFT data are used in combination with the readily measured trait SLA. This shows encouraging possibilities of progress in developing general predictive equations for macro-ecology, global scaling, and global modeling.  相似文献   

16.
Genetic structure at several spatial scales was examined in the rare California annual, Clarkia springvillensis . Using seven isozyme-encoding loci as genetic markers, we assessed the amount and distribution of genetic variation among three populations and eight subpopulations. Total genetic variation was lower than in species with similar life history traits but equivalent to that of other endemic plants. Spatial autocorrelation showed some evidence for very limited differentiation within subpopulations at a scale of 1–2 m. The subpopulations, separated by tens of meters, were found to be more differentiated from each other ( F sp = 0.084) on average than were populations ( F,pt = 0.017). This local genetic differentiation was not correlated with physical distance between subpopulations. The low Fpt estimates suggest that substantial gene flow is occurring among populations. However, the lack of correlation between genetic and geographic distances and the significant differentiation of subpopulations suggest that genetic drift is occurring within populations. Therefore, we believe the apparent homogeneity of populations is due to each population's gene frequencies' being an average of several divergent subpopulations. If drift is causing differentiation within populations, it may eventually cause differentiation between populations. The importance of using a hierarchical approach to evaluating genetic structure is clear. Patterns occurring at one spatial scale may not be evident at others. One should not necessarily conclude that gene flow is substantial and that the risk of genetic erosion via drift is negligible just because differentiation between populations is small; the system may not be at equilibrium. This lesson is particularly important when recent changes in climate or land use are apparent.  相似文献   

17.
不同水分条件下三裂叶豚草叶解剖结构的生态适应性   总被引:2,自引:0,他引:2  
薛静  王国骄  李建东  孙备  王蕊 《生态环境》2010,19(3):686-691
三裂叶豚草(Ambrosia trifida)是世界公害杂草,于20世纪30年代传人我国后,对我国人民的生产生活和生态系统造成了严重危害。本研究以我国北方地区主要分布的入侵植物三裂叶豚草为对象,采用盆栽实验的方法及石蜡切片技术,在Zeiss Image.A,光学显微镜下研究不同土壤水分条件下三裂叶豚草叶片解剖结构的变化。结果表明:三裂叶豚草在90%土壤相对含水量处理下叶片厚度、上下表皮厚度均增加,是细胞储水量增加,细胞体积增大的结果;在50%、30%土壤相对含水量处理下三裂叶豚草叶片变薄、栅海比值增大,是典型的节约型干旱适应,同时叶肉栅栏细胞层数增加、栅栏细胞密度增大,表现出强壮型干旱适应特征;干旱胁迫程度越大,三裂叶豚草叶显微结构变化越大。不同水分条件下三裂叶豚草解剖特征总体可塑性值为0.39,具较高可塑性,其中叶片厚度、上表皮厚度、下表皮厚度、栅栏组织与海绵组织的厚度比(P/S)、栅栏细胞密度等指标较栅栏组织厚度、海绵组织厚度具有更大可塑性,表明这些因素对三裂叶豚草成功入侵有较大作用。  相似文献   

18.
不同底质和透明度下马来眼子菜的表型可塑性研究   总被引:9,自引:0,他引:9  
刘伟龙  胡维平  陈桥 《生态环境》2007,16(2):363-368
马来眼子菜(Potamogeton malaianusMiq.)是目前太湖沉水植物优势种之一。文章比较分析了3种不同底质和透明度情况下马来眼子菜的生长特征,探索其在太湖不断扩展的原因及其适应性。分别选取粘土质粉砂、粉砂和下蜀黄土底质上生长的马来眼子菜进行观察试验。结果表明,这3种底质在粒度组成、营养盐和分布特征上具有显著差异。在太湖粘土质粉砂和粉砂底质上马来眼子菜的生物量比下蜀黄土底质上的马来眼子菜高,其生物量随着底质营养盐的增加而增加。马来眼子菜与觅光相关的形态指标,如高度、节间距、节数、叶数、叶长及叶面积均随着底质营养盐的增加而显著增加。马来眼子菜的冠层高度与水体的透明度呈显著负相关,表明其对剧烈变化的湖泊光环境具有很强的适应能力。马来眼子菜在不同底质上的形态可塑性是其优先占据湖泊资源成为优势种的重要原因。  相似文献   

19.
Variation in traits closely related to fitness is expected to be low. This is because these traits are under directional selection and the best genotype should prevail. However, there have been a number of studies demonstrating the existence of considerable variance in sexually selected traits, which is generally known as the lek paradox. Accordingly, earlier studies found substantial variation in sperm transfer rates in Panorpa vulgaris. Aiming at finding the mechanism that maintains this variation, we analyzed the condition dependence and the narrow sense heritability of sperm transfer rates. Food deprivation in the larval/adult phase caused a decrease in the males’ capability of saliva secretion resulting in shorter copulations and a reduced number of transferred sperm. There was a positive correlation between mean sperm transfer rates and mean body mass. Additionally, intermale variation in sperm transfer rates decreased with increasing food availability. Hence, we suggest that sperm transfer rates in P. vulgaris are influenced by adult feeding history. Heritability analyses of sperm transfer rates did not provide significant results, which is consistent with the general hypothesis that additive genetic variance in traits closely related to fitness is small. Since a trait’s potential to respond to selection is proportional to the amount of contained additive genetic variance, the ascertained small heritability provides a satisfying explanation for the maintenance of substantial variation in sperm transfer rates.  相似文献   

20.
水深和氮素是影响湿地植物生长的关键因素,研究两者对功能性状的影响有助于预测未来环境变化下湿地植物的生长与分布趋势.以三江平原沼泽湿地3种优势植物(漂筏苔草Carex pseudocuraica、毛苔草Carex lasiocarpa和燕子花Iris laevigata)为研究对象,设置3个水深(0、5、15 cm)和3个氮浓度(0、12、36 mmol/L)的双因子控制实验,探讨不同水深和氮添加对3种湿地植物功能性状的影响.结果显示,水深和氮添加对漂筏苔草根冠比和燕子花株高、地下与地上生物量及根冠比存在交互影响.在0 mmol/L氮浓度下,随着水深的增加,漂筏苔草根冠比降低,燕子花根冠比呈先降低后上升的趋势.在12 mmol/L氮浓度下,随着水深的增加,燕子花地下与地上生物量降低,根冠比增加.随着氮浓度的增加,燕子花株高在0、5 cm水深时降低,在15 cm水深时增加.水深对漂筏苔草叶面积、地下与地上生物量和燕子花叶面积有显著影响,随着水深的增加,漂筏苔草叶面积、地下与地上生物量呈先增加后下降的趋势,燕子花叶面积降低.氮添加对毛苔草株高、叶面积及根冠比有显著影响,随着氮浓度的增加,毛苔草株高和叶面积降低,根冠比呈先降低后上升的趋势.本研究表明湿地植物对水深和氮添加水平的响应依赖具体物种和功能性状指标而不同,未来还应加强湿地植物地下性状的研究.(图3表1参56)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号