首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
甲烷产生过程是湿地生态系统中最活跃的生物地球化学进程之一,岩溶湿地是一类具有典型岩溶地区水文特征和重要环境影响的特殊内陆淡水湿地.为了解岩溶湿地产甲烷菌的类型及其在碳循环中的贡献,综合运用分子生物学、微生物学和地球化学的方法对桂林会仙岩溶湿地沉积物中产甲烷菌的数量、群落组成、活性以及相关的环境因子进行研究.分析15-35 cm沉积物中甲基辅酶M还原酶基因mcr A的数量、种类以及与环境因子之间的关系,发现mcr A基因的拷贝数为106~(-1)07,主要来自5类产甲烷古菌目,分别是甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)、甲烷胞菌目(Methanocellales)、甲烷杆菌目(Methanobacteriales)以及一类尚未鉴定的产甲烷古菌,这些序列中有一半的序列与已知Mcr A蛋白序列相似度在95%以下,并且mcr A基因的多样性和数量分布主要受到有机碳和硫酸盐含量的影响.在产甲烷活性方面,沉积物的乙酸型产甲烷速率为1 024(±447)pmol g~(~(-1)) d~(-1),氢型产甲烷量约为650(±155)pmol g~(~(-1)) d~(-1).上述结果表明,会仙岩溶湿地具有同普通淡水湿地类似的产甲烷菌群落组成和较高的产甲烷潜力,并且该环境中可能蕴藏着许多尚未被研究的微生物资源.  相似文献   

2.
使用全混流反应器(CSTR),研究53℃和60℃条件下厨余垃圾的处理效果,同时利用T-RFLP(末端限制性片段长度多态性)以及16S rRNA基因克隆文库的方法,对微生物群落结构进行跟踪解析.结果表明,在温度为53℃、挥发性总固体(VTS)负荷为4 g L-1 d-1时,处理性能稳定,有机酸积累少,产气率约为900 mL/g VTS;当温度升高至60℃时,TOC和有机酸积累,产气率显著下降.微生物群落分析结果表明,当温度从53℃升高至60℃后,细菌群落从以发酵产酸菌群为主转变为以各类发酵菌和有机酸氧化菌为主,产甲烷菌群落中乙酸营养型产甲烷菌比例下降,而氢营养型产甲烷菌比例升高.运行温度从53℃升高至60℃后厌氧处理能力下降的主要原因是乙酸营养型产甲烷菌比例下降,乙酸的消耗需要通过乙酸氧化菌和氢营养型的产甲烷菌的协同作用,产甲烷速率降低,从而导致处理能力下降.图3表3参50  相似文献   

3.
温室气体N_2O的生成和排放与反硝化功能微生物关系密切,探讨沉积物反硝化微生物功能基因丰度及其与N_2O通量的关系有助于更好地理解沉积物N_2O生成与排放的微生物学机制。以太湖为研究对象,采用定量qPCR(Quantitative PCR)技术测定了太湖沉积物反硝化功能基因(nirK、nirS、norB和nosZ)丰度,阐明了太湖沉积物反消化功能基因丰度的季节变化规律,并分析了反硝化功能基因丰度与沉积物N_2O通量及其他环境因子的关系。结果表明:太湖沉积物反硝化功能基因丰度呈现夏秋季高冬春季低,具有明显的季节变化特征,norB基因丰度最高,均值为9.03×10~9 copies·g~(-1),其次为nir S基因(1.14×10~9copies·g~(-1)),nirK和nosZ基因丰度均值分别为3.04×10~8copies·g~(-1)和1.09×10~8copies·g~(-1)。沉积物TN和NO_2~-是影响反硝化功能基因丰度的重要环境因子。夏秋季沉积物N2O通量为-0.12-0.04nmol·g~(-1)·h~(-1),均值为-0.05nmol·g~(-1)·h~(-1),与反硝化功能基因(nir K、nir S和nir B)丰度呈显著正相关(P0.05),表明反硝化过程消耗了N_2O。冬春季沉积物N_2O通量为-0.05-0.48 nmol·g~(-1)·h~(-1),均值为0.27 nmol·g~(-1)·h~(-1),与反硝化功能基因丰度不具显著相关性,表明反硝化作用可能不是N_2O产生的主要过程。  相似文献   

4.
pH值调控对秸秆两阶段厌氧发酵产沼气的影响   总被引:1,自引:0,他引:1  
两阶段厌氧发酵产沼气是秸秆沼气化利用的重要方式之一。秸秆厌氧发酵过程包括水解产酸和产甲烷两个阶段,水解产酸是秸秆沼气化的限速步骤,也是目前的研究重点。pH值是影响物料水解产酸的重要因素,目前的研究多集中于酸性环境对物料水解产酸的影响,碱性环境对物料水解产酸的影响还未见研究报道。在实验室条件下,每天调节水解产酸反应器发酵液pH值至8.0(T1)、9.5(T2)和11.0(T3),CK在实验过程中不调节水解产酸反应器发酵液pH值,水解产酸反应器排出的水解酸化液直接用蠕动泵泵入产甲烷反应器内产甲烷,分析了发酵过程中水解产酸反应器日产气量、甲烷含量、水解酸化液pH值、COD浓度以及产甲烷反应器产气特性的变化。结果表明:在不调节水解产酸反应器水解酸化液pH值条件下,秸秆两阶段厌氧发酵可以正常进行,秸秆干物质(TS)产气量为281.28mL·g-1,平均甲烷含量为47.36%;T1水解产酸反应器内水解酸化液pH值稳定在7左右,系统累积产气量、总产甲烷量和平均甲烷含量分别较CK大幅增加了24.51%、29.39%和2.5个百分点;T2和T3水解产酸反应器产气明显受到抑制,水解酸化液后续产甲烷亦受到明显抑制,产甲烷反应器累积产气量分别仅为CK的89.97%和17.48%,总产气量仅为T1的67.67%和10.20%;维持水解产酸反应器至碱性条件促进了秸秆中半纤维素的溶出和木质素的破坏,但不利于纤维素的溶出,TS损失率的结果与产气的结果一致。综合以上结果,调节水解产酸反应器水解酸化液pH值至8.0对提高秸秆两阶段厌氧发酵产沼气有明显的促进作用。  相似文献   

5.
ABR反应器的启动及颗粒污泥特征的研究   总被引:13,自引:0,他引:13  
在20-30℃条件下,对ABR反应器进行了169d 5个阶段的启动实验,进水COD容积负荷达到4.38kgCOD·m-3·d-1,出水COD,挥发性脂肪酸(VFA)和pH值达到要求;形成了大量的性能良好的颗粒污泥,其尺度介于2-3.8mm之间,沉降速度大于20m·h-1,MLVSS/MLSS值均大于65%;但各格室厌氧污泥的污泥指数(SVI)差异较大.显微分析表明,不同格室内呈现出种群配合良好的厌氧微生物分布,第一格室存在大量的优势发酵细菌,并有代谢乙酸的丝状甲烷细菌,然后颗粒污泥中的微生物逐渐向以产甲烷细菌优势菌群过渡,并存在许多浮游的原生和后生动物.另外,各格室中的颗粒污泥形状各异,表面凸凹不平,存在气孔,且颗粒污泥愈靠近核心,微生物数量愈少,细菌分泌物和无机质愈多.  相似文献   

6.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

7.
东江下游典型饮用水源地抗生素抗性基因分布研究   总被引:1,自引:0,他引:1  
抗生素抗性基因(AntibioticsResistanceGenes,ARGs)是环境中的一类新型污染物。为了解东江下游地区水源地中ARGs的污染水平及其影响因素,采用实时荧光定量PCR技术,对东江下游地区9个河流型饮用水源地和5个湖泊型饮用水源地8种ARGs[sul1、sul2、sul3、tet(M)、tet(O)、tet(Q)、tet(G)、ermB]的绝对丰度进行检测分析。结果表明:东江下游饮用水源地总ARGs绝对丰度水平偏低,ARGs总丰度范围为2.37×10~7-4.80×10~8 copies?L~(-1),其中抗性基因sul1的丰度相对较高,这可能与磺胺类药品是常用药品有关。磺胺类ARGs(sul1、sul2)在所有饮用水源地中均有检出,而sul3的检出率为85.7%;四环素类ARGs[tet(M)、tet(O)、tet(Q)、tet(G)]的检出率较高,为64.3%-100%;大环内酯类ARGs检出率最低。河流型水源地上游点位ARGs绝对丰度为1.03×108 copies?L~(-1),下游点位绝对丰度为2.89×10~8 copies?L~(-1),因此河流型饮用水源地的ARGs绝对丰度水平随着河流方向呈现逐渐升高趋势。除了一处曾为水产养殖的备用湖泊型水源地外,河流型水源地除sul1外的抗性基因丰度(3.25×10~5 copies?L~(-1))明显高于湖泊型饮用水源地(1.14×10~5 copies?L~(-1))。通过对东江下游典型饮用水源地ARGs进行研究,为该地区ARGs污染现状提供了基础数据,也为水环境中ARGs污染整治提供依据。  相似文献   

8.
采用厌氧培养箱、气相色谱技术和MPN计数法,研究了甲胺磷和乙草胺在4种浓度(0 1、0 2、0 5和1 0mg·L-1)下对水稻田土壤产甲烷菌种群数量及其活性的影响。加甲胺磷后7d内刺激产甲烷菌种群的生长,数量增加0.2~44.1倍,每管的产甲烷量增加0.8~2.1倍,且刺激作用随药剂浓度的增加而增强;加乙草胺后7d内,产甲烷菌的生长受到抑制,数量下降了50%~99%,每管的产甲烷量显著减少,且抑制作用随药剂浓度的增加而增强。随着加药时间的延长,甲胺磷和乙草胺逐渐降解,产甲烷菌数量又恢复至原有水平。  相似文献   

9.
应用荧光定量PCR技术对蓝藻水华暴发期间太湖和巢湖水体中产毒微囊藻和总微囊藻种群丰度的空间分布进行了研究.分别以微囊藻毒素合成基因基因家族成员mcyD和小核糖体16S rDNA序列构建定量PCR标准曲线,研究产毒微囊藻和总微囊藻种群丰度.结果表明:太湖和巢湖微囊藻种群由产毒微囊藻和非产毒微囊藻组成;蓝藻水华暴发期间,微囊藻种群组成及其丰度分布具有明显的空间差异性:太湖产毒微囊藻种群丰度为9.89×104~4.51×106 copies mL-1,产毒微囊藻占总微囊藻种群的比例为20.5%~38.1%;巢湖产毒微囊藻种群丰度为4.12×104~5.44×106 copies mL-1,其占总微囊藻种群的比例为8.4%~96.6%.总的来说,富营养化严重的湖区总微囊藻和产毒微囊藻种群丰度较高,产毒微囊藻占总微囊藻种群的比例也较高.图7表3参29  相似文献   

10.
胞外抗生素抗性基因是抗性基因的重要存在形式,可能通过转化重新进入细胞表达抗药性.因此其具有严峻却隐蔽的健康风险,且不同形态胞外抗生素抗性基因的风险存在显著差异,然而当前针对胞外抗性基因风险的研究极为稀少.本研究以序批式活性污泥反应器(SBR)为例,考察了污水生物处理过程中结合型和游离型胞外抗性基因产生的时空特征,以及曝气强度和污泥负荷的影响.结果 表明,SBR启动期2种胞外抗性基因均大量产生,且游离型胞外抗性基因的增加倍数和持续时间高于结合型:稳定运行后2种胞外抗性基因的丰度显著下降.从胞内外抗性基因的比重来看,好氧阶段以胞外抗性基因为主,且游离型胞外抗性基因比例达60%以上;厌氧阶段以胞内抗性基因为主,且结合型胞外抗性基因比例升高(7.5%~31.9%);出水中游离型胞外抗性基因占据绝对优势,比例达66.5% ~ 86.9%.曝气强度提高使2种胞外抗性基因丰度显著提高,但游离型胞外抗性基因提高程度(2.2倍~12.2倍)高于结合型(2.1倍~62倍).污泥负荷提高同样导致2种胞外抗性基因丰度提高,但游离型胞外抗性基因提高程度(1.3倍~7.8倍)低于结合型(1.9倍~ 13.3倍).研究表明,大量胞外抗性基因将在污水生物处理过程中产生,并随污水排放至环境中,是水环境中抗生素抗性基因(ARGs)的重要来源之一.  相似文献   

11.
沼气中的硫化氢(H2S)是一种具有腐蚀性的有毒气体,因此在使用前必须对沼气进行人工脱硫处理.以硝酸盐作为电子受体,设置两个反应器研究在不同沼气进气速率下微生物对H2S去除能力的影响,并分析厌氧污泥的菌群结构和关键微生物种群类型.结果表明在接种污泥的反应器A中,在低进气H2S负荷下,即沼气流速为0.5 L/min时,H2S的去除率在96%以上;在高进气H2S负荷下,即沼气流速为2 L/min、3 L/min和4 L/min时,H2S去除率在20%-35%之间.即随着沼气流速加快,气体停留时间缩短,H2S去除率逐渐下降.未接种污泥的反应器B前6 d H2S去除率逐渐升高,6 d后去除率逐渐下降.厌氧污泥中的微生物生化作用对H2S的去除率有显著影响.微生物群落结构分析结果表明,在反应器运行过程中污泥的微生物种类变化较小.厌氧污泥中微生物群落的优势门是变形菌门(Proteobacteria),优势属是硫杆菌属(Thiobacillus).Sulfurimonas在微生物群落中的相对丰度变化与H2S去除率的变化呈显著正相关.故Sulfurimonas可能是本反应系统中的主要脱氮脱硫菌.  相似文献   

12.
糖蜜酒精废水两相UASB处理工艺的酸化段特征   总被引:7,自引:0,他引:7  
文章考察了糖蜜酒精废水二相UASB处理工艺的酸化段特征 ,试验结果表明酸化段的容积负荷达到3 0kgCOD/m3 时 ,系统仍能正常运行 ,TOC去除率在 3 5%以上 ,酸化段的SO4 2 -去除率在 70 %。糖蜜酒精废水酸化率在 50 % ,二相厌氧生物处理系统并未将产酸微生物与产甲烷微生物截然分开 ,在产酸相中仍含有一定数量的产甲烷菌。  相似文献   

13.
冻土土壤中的甲烷代谢微生物可氧化或产生甲烷,影响着甲烷所参与的碳循环过程,对于全球温室气体的释放和调节具有重要的作用.对祁连山冻土区土壤活动层与冻土层中的甲烷代谢微生物产甲烷菌(Methanogens)和甲烷氧化菌(Methanotrophs)的群落结构组成进行研究.通过对产甲烷菌的mcrA基因和甲烷氧化菌的pmoA基因进行PCR扩增,分别构建其基因克隆文库,并通过序列同源比对进行系统发育分析和多样性分析.结果显示:冻土土壤活动层中的产甲烷菌包括Rice cluster Ⅰ、Methanosarcinaceae、Methanomicrobiales、Methanosaetaceae、Methanobacteriaceae五种类型,而在土壤冻土层则包括了Rice cluster Ⅰ、Methanosarcinaceae、Methanobacteriaceae三种类型.土壤活动层的甲烷氧化菌由隶属于α-Proteobacteria(Type Ⅱ)的Methylocystis和隶属于γ-Proteobacteria(Type Ⅰ)的Methylobacter两种类型群体组成,而土壤冻土层中则只包括了Methylocystis这一种类型.由此可见,冻土土壤活动层与冻土层中的甲烷代谢微生物群落结构存在一定的差异.  相似文献   

14.
二氧化碳(CO_2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO_2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO_2产甲烷的影响.当阴极电势从-0.70 V降低到-0.90 V vs Ag/Ag Cl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m~2和0.025 mmol/h.与此同时,MES的电流密度从0.002 A/m~2增加到0.18 A/m~2,阴极产甲烷的库伦效率在49%和90%之间.当阴极电势更负时,MES阴极几乎不产甲烷.扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状.16S r DNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌.本研究表明,微生物电合成系统还原CO_2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO_2产甲烷.  相似文献   

15.
产甲烷生化代谢途径研究进展   总被引:4,自引:0,他引:4  
微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%.产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义.本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将CO2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷.在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的ATP合成酶将ADP转化成ATP以获得能量.根据底物类型的不同,可以将该过程分为3类:还原CO2途径、乙酸途径和甲基营养途径.还原CO2途径是以H2或甲酸作为主要的电子供体还原CO2产生甲烷,其中涉及到一个最新的发现——电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团被氧化产生电子供体H2用于还原甲基基团;甲基营养途径是以简单甲基化合物作为底物,以外界提供的H2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团.通过这3种途径产甲烷的过程中,每消耗1mol底物所产生AT P的顺序为还原CO2途径>甲基营养途径>乙酸途径.由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践.  相似文献   

16.
土壤微生物在陆地生物地球化学循环过程中起着非常重要的作用。为了探索青藏高原高寒草地类型地上植被特性和地下土壤环境与土壤微生物功能基因之间关系,以三江源国家公园高寒草原、高寒沼泽化草甸及高寒草甸3种典型草地类型为研究对象,利用基因芯片(GeoChip 5.0)技术测定其微生物功能基因丰度,并分析它们之间的差异及影响因素。结果表明:(1)3种草地类型地上群落结构和地下土壤环境存在差异性,其中高寒草原物种多样性指数、pH值较高,沼泽化草甸中土壤含水量、微生物量碳、地上生物量、土壤速效氮含量较高,高寒草甸中则是土壤微生物量氮含量较高;(2)3种高寒草地类型的碳循环、氮循环、磷循环、有机修复的土壤微生物功能基因丰度存在显著差异,其中这些功能基因的丰度在高寒沼泽化草甸最高,高寒草甸、高寒草原次之;(3)地上植物物种多样性虽对功能基因丰度变化的解释率(r2)在57.1%-61.2%之间,但统计学上不显著(P>0.05),而微生物基因丰度随地上生物量的增加而增加,且解释率(r2)为77.5%-80.0%(P<0.05)。在pH、土壤含水量、土壤微生物量等地下土壤环境因子中,pH对功能基因丰度存在显著影响(P<0.01)解释率在83.4%-87.5%间,且土壤微生物功能基因丰度随土壤pH的增加而降低;土壤含水量、土壤微生物量对土壤微生物功能基因丰度的解释率分别为81.9%-83.1%(P<0.05)和76.8%-86.2%(P<0.05),微生物功能基因丰度随这两者含量的增加呈上升趋势。进一步运用RDA分析发现,pH、土壤微生物量、地上生物量是影响微生物功能基因丰度的主要因子,其中土壤微生物量是土壤有机质的重要组成部分,土壤有机质又是通过地上植被凋落物沉积所得到的。因此,地上植被特性的自上而下控制因子影响了土壤环境中自下而上的控制因子,间接的影响了微生物功能基因丰度。由此得出,地上植被特性和地下土壤环境因子共同作用控制了微生物功能基因丰度使其出现差异性。  相似文献   

17.
在15℃条件下用产甲烷菌培养基对采自四川省红原县的牦牛粪进行富集培养,采用Hungate厌氧操作技术从富集培养物中分离得到一株在8~45℃范围生长、最适生长pH为8.5的嗜碱产甲烷菌T13.该菌株革兰氏染色阳性,细胞聚集体,在液体培养基中为肉眼可见的颗粒状物,在固体培养基上菌落为淡黄色桑葚状;可利用甲醇、乙酸盐和甲胺作为唯一碳源生长;对氯霉素和庆大霉素敏感;生长pH范围为6.5~9.5;最适NaCl浓度为0~0.15 mol L-1;最适生长温度为30℃.形态和生理生化特征以及16S rDNA序列分析表明菌株T13为梅氏产甲烷八叠球菌(Methanosarcina mazei).由于该菌最适生长pH为8.5,所以初步认为菌株T13是一株梅氏产甲烷八叠球菌的新菌株.  相似文献   

18.
以上海某垃圾焚烧厂为研究对象,采用电感耦合等离子体发射光谱(ICP-OES)和荧光定量PCR定量分析了其周边土壤中重金属(Cd、Pb、Cu、Ni、Cr、Zn和As)含量水平,及不同硝化和反硝化功能基因丰度(AOB-amoA、nxrB、narG、nirS、norB和nosZ),并通过空间插值法分析了目标重金属与硝化和反硝化功能基因的空间分布特征,同时通过相关性分析和冗余分析探讨了土壤重金属及其理化性质对硝化和反硝化功能基因丰度变化的作用影响。结果表明,研究区域土壤中Cd、Pb、Cu、Ni、Cr、Zn和As的含量分别为0.083~1.065、15.54~43.17、18.30~65.52、24.58~41.65、65.04~201.0、58.96~153.5和0.098~5.115 mg·kg~(-1),而土壤中AOB-amoA、nxrB、narG、nirS、norB和nosZ基因丰度分别为4.89×10~2~1.34×10~5 copies·g~(-1)、5.43×10~6~5.41×10~7 copies·g~(-1)、1.21×10~6~7.91×10~6 copies·g~(-1)、3.79×10~6~7.39×10~7 copies·g~(-1)、1.61×10~5~1.33×10~7 copies·g~(-1)和1.44×10~4~2.18×10~5 copies·g~(-1)。由空间插值分析结果可知,土壤中重金属主要来源于焚烧烟气排放沉降,硝化和反硝化功能基因的空间分布特征与土壤总氮及重金属均具有相似性。相关性分析和冗余分析结果显示,除Cd和Zn外,其余重金属含量对硝化和反硝化功能基因丰度影响不显著,表明垃圾焚烧厂周边土壤中重金属污染对氮循环过程影响较小。相比之下,土壤理化性质如总有机碳、总氮等对硝化和反硝化功能基因丰度影响更显著。该研究可为相关地区垃圾焚烧厂周边土壤重金属污染控制及微生物生态风险评价提供参考。  相似文献   

19.
采用新型厌氧好氧一体化生物反应器对发酵废水进行了中试处理研究.试验结果表明,系统总有机负荷最高可达到8.88kg(COD)m-3d-1,系统去除率稳定在88.10%~96.88%,说明反应器处理效率高,抗冲击能力强.反应器结构合理,利于保持丰富、高活性的微生物,反应器厌氧区颗粒污泥TS高达83.9gL-1,VS/TS为56.9%~57.4%,比产甲烷活性为280~350mL(CH4)gvss-1d-1;好氧区固定化微生物TS高达64.03gL-1载体,VS/TS为94.02%~94.30%.反应器各功能区对废水的降解过程分析,说明反应器厌氧区和好氧区一体化结构合理,可将废水逐级降解,从而保证整个系统的处理效果.图8表4参11  相似文献   

20.
利用三室根箱装置获得玉米生长室土壤(S I)、根际土(SⅡ)、非根际土(SⅢ)3个不同根区土壤,采用传统平板计数培养与变性梯度凝胶电泳(DGGE)技术相结合的方法,研究了转基因玉米Btll及其非转基因亲本在播种后40、50、60 d各根区土壤细菌数量及多样性的变化.结果表明,转Bt基因玉米播种后50、60 d S I根区土壤可培养细菌数量显著低于非转基因亲本,播种后40、50 d SⅡ根区土壤可培养细菌数量较亲本玉米显著增加,而在其他时期和根区与亲本玉米之间均无显著差异.DGGE图谱显示,3个采样时期各根区DGGE图谱条带数、土壤细菌多样性指数和均匀度指数均无显著差异(P>0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号