首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   

2.
Elevated atmospheric CO2 can result in larger plants returning greater amounts of residue to the soil. However, the effects of elevated CO2 on carbon (C) and nitrogen (N) cycling for different soybean varieties have not been examined. Aboveground residue of eight soybean [Glycine max (L.) Merr.] varieties was collected from a field study where crops had been grown under two different atmospheric CO2 levels [370 micromol mol(-1) (ambient) and 550 micromol mol(-1) (free-air carbon dioxide enrichment, FACE)]. Senesced residue material was used in a 60-d laboratory incubation study to evaluate potential C and N mineralization. In addition to assessing the overall effects of CO2 level and variety, a few specific variety comparisons were also made. Across varieties, overall residue N concentration was increased by FACE, but residue C concentration was only slightly increased. Overall residue C to N ratio was lower under FACE and total mineralized N was increased by FACE, suggesting that increased N2 fixation impacted residue decomposition; total mineralized C was also slightly increased by FACE. Across CO2 levels, varietal differences were also observed with the oldest variety having the lowest residue N concentration and highest residue C to N ratio; mineralized N was lowest in the oldest variety, illustrating the influence of high residue C to N ratio. It appears (based on our few specific varietal comparisons) that the breeding selection process may have resulted in some varietal differences in residue quality which can result in increased N or C mineralization under elevated CO2 conditions. This limited number of varietal comparisons indicated that more work investigating varietal influences on soil C and N cycling under elevated CO2 conditions is required.  相似文献   

3.
The effects of nutrient loading on estuaries are well studied, given the multitude of negative water quality and ecosystem effects that have been attributed to excess nitrogen and phosphorus. A current gap in this knowledge involves the sensitivity of seasonal cycles of estuarine biogeochemical processes to direct (warming) and indirect influences (nutrient load timing) of climate change. We used a coupled hydrologic–biogeochemical model to investigate changes in the phenology of hypoxia and related biogeochemical processes in Chesapeake Bay under three different hydrologic regimes. Shifts to earlier nutrient load timing during idealized simulations reduced the overall annual hypoxic volume, resulting from discernable, but relatively small reductions in phytoplankton biomass and both sediment and water-column respiration. Simulated increases in water temperature caused an increase in spring/early summer hypoxic volume associated with elevated respiration rates, but an associated exhaustion of organic matter in the early summer caused a decrease in late summer/fall hypoxic volume due to lowered respiration. Warming effects on hypoxia were larger than nutrient timing effects in scenarios where warming was restricted to spring and when it was applied to all months of the year. These idealized simulations begin the process of understanding the potential impacts of future climatic changes in the seasonal timing of key biogeochemical processes associated with eutrophication.  相似文献   

4.
The positive impact of elevated atmospheric CO(2) concentration on crop biomass production suggests more carbon inputs to soil. Further study on the effect of elevated CO(2) on soil carbon and nitrogen dynamics is key to understanding the potential for long-term carbon storage in soil. Soil samples (0- to 5-, 5- to 10-, and 10- to 20-cm depths) were collected after 2 yr of grain sorghum [Sorghum bicolor (L.) Moench.] production under two atmospheric CO(2) levels: (370 [ambient] and 550 muL L(-1) [free-air CO(2) enrichment; FACE]) and two water treatments (ample water and limited water) on a Trix clay loam (fine, loamy, mixed [calcareous], hyperthermic Typic Torrifluvents) at Maricopa, AZ. In addition to assessing treatment effects on soil organic C and total N, potential C and N mineralization and C turnover were determined in a 60-d laboratory incubation study. After 2 yr of FACE, soil C and N were significantly increased at all soil depths. Water regime had no effect on these measures. Increased total N in the soil was associated with reduced N mineralization under FACE. Results indicated that potential C turnover was reduced under water deficit conditions at the top soil depth. Carbon turnover was not affected under FACE, implying that the observed increase in soil C with elevated CO(2) may be stable relative to ambient CO(2) conditions. Results suggest that, over the short-term, a small increase in soil C storage could occur under elevated atmospheric CO(2) conditions in sorghum production systems with differing water regimes.  相似文献   

5.
ABSTRACT: The Gunnison River drains a mountainous basin in western Colorado, and is a large contributor of water to the Colorado River. As part of a study to assess water resource sensitivity to alterations in climate in the Gunnison River basin, climatic and hydrologic processes are being modeled. A geographic information system (GIS) is being used in this study as a link between data and modelers - serving as a common data base for project personnel with differing specialties, providing a means to investigate the effects of scale on model results, and providing a framework for the transfer of parameter values among models. Specific applications presented include: (1) developing elevation grids for a precipitation model from digital elevation model (DEM) point-elevation values, and visualizing the effects of grid resolution on model results; (2) using a GIS to facilitate the definition and parameterization of a distributed-parameters, watershed model in multiple basins; and (3) nesting atmospheric and hydrologic models to produce possible scenarios of climate change.  相似文献   

6.
White lupine (Lupinus albus L.) was used as a phosphorus (P)-efficient model plant to study the effects of elevated atmospheric CO(2) concentrations on (i) P acquisition, (ii) the related alterations in root development and rhizosphere chemistry, and (iii) the functional and structural diversity of rhizosphere microbial communities, on a P-deficient calcareous subsoil with and without soluble P fertilization. In both +P (80 mg P kg(-1)) and -P treatments (no added P), elevated CO(2) (800 micromol mol(-1)) increased shoot biomass production by 20 to 35% and accelerated the development of cluster roots, which exhibit important functions in chemical mobilization of sparingly soluble soil P sources. Accordingly, cluster root formation was stimulated in plants without P application by 140 and 60% for ambient and elevated CO(2) treatments, respectively. Intense accumulation of citrate and increased activities of acid and alkaline phosphatases, but also of chitinase, in the rhizosphere were mainly confined to later stages of cluster root development in -P treatments. Regardless of atmospheric CO(2) concentrations, there was no significant effect on accumulation of citrate or on selected enzyme activities of C, N, and P cycles in the rhizosphere of individual root clusters. Discriminant analysis of selected enzyme activities revealed that mainly phosphatase and chitinase contributed to the experimental variance (81.3%) of the data. Phosphatase and chitinase activities in the rhizosphere might be dominated by the secretion from cluster roots rather than by microbial activity. Alterations in rhizosphere bacterial communities analyzed by denaturing gradient gel electrophoresis (DGGE) were related with the intense changes in root secretory activity observed during cluster root development but not with elevated CO(2) concentrations.  相似文献   

7.
ABSTRACT Atmospheric scientists have predicted that large-scale climatic changes will result from increasing levels of tropospheric CO2 We have investigated the potential effects of climate change on the primary productivity of Castle Lake, a mountain lake in Northern California. Annual algal productivity was modeled empirically using 25 years of limnological data in order to establish predictive relationships between productivity and the climatic variables of accumulated snow depth and precipitation. The outputs of monthly temperature and precipitation from three general circulation models (GCMs) of doubled atmospheric CO2 were then used in the regression model to predict annual algal productivity. In all cases, the GCM scenarios predicted increased algal productivity for Castle Lake under cenditions of doubled atmospheric CO2The primary cause of enhanced productivity was the increased length of the growing season resulting from earlier spring ice-out.  相似文献   

8.
The climate simulations from atmospheric general circulation models (GCMs) are often used to analyze the potential effects of climate change on environmental resources. It has been demonstrated that there are differences among the simulations from various GCMs, on spatial scales ranging from global to regional. This paper quantifies the differences in temperature and precipitation simulated by three major GCMs for four specific regions: an agricultural region (the North American winter wheat belt), a hydrologic region (the Great Basin), a demographic region (the high-density population corridor of the northeast United States), and a political region (the state of Texas). Both the current (control) climate and the climatic response to a doubling of atmospheric carbon dioxide (CO2) are consideredIn each region, even when the data are averaged on a seasonal basis, marked differences occurred in the areal average climate simulated by the different GCMs for both the control climate and the doubled-CO2 climate. Thus, climate impact studies based on the simulations of more than one GCM could easily yield a range of possible results  相似文献   

9.
In this paper, we describe a model designed to simulate seasonal dynamics of warm and cool season grasses and forbs, as well as the dynamics of woody plant succession through five seral stages, in each of nine different plant communities on the Rob and Bessie Welder Wildlife Refuge. The Welder Wildlife Refuge (WWR) is located in the Gulf Coastal Prairies and Marshes ecoregion of Texas. The model utilizes and integrates data from a wide array of research projects that have occurred in south Texas and WWR. It is designed to investigate the effects of alternative livestock grazing programs and brush control practices, with particular emphasis on prescribed burning, the preferred treatment for brush on the WWR. We evaluated the model by simulating changes in the plant communities under historical (1974-2000) temperature, rainfall, livestock grazing rotation, and brush control regimes, and comparing simulation results to field data on herbaceous biomass and brush canopy cover collected on the WWR over the same period. We then used the model to simulate the effects of 13 alternative management schemes, under each of four weather regimes, over the next 25 years. We found that over the simulation period, years 1974-2000, the model does well in simulating the magnitude and seasonality of herbaceous biomass production and changes in percent brush canopy cover on the WWR. It also does well in simulating the effects of variations in cattle stocking rates, grazing rotation programs, and brush control regimes on plant communities, thus providing insight into the combined effects of temperature, precipitation, cattle stocking rates, grazing rotation programs, and brush control on the overall productivity and state of woody plant succession on the WWR. Simulation of alternative management schemes suggests that brush canopy removal differs little between summer and winter prescribed burn treatments when precipitation remains near the long-term average, but during periods of low precipitation canopy removal is greater under winter prescribed burning. The model provides a useful tool to assist refuge personnel with developing long-term brush management and livestock grazing strategies.  相似文献   

10.
ABSTRACT: An irrigation model based on a modified Thornthwaite water balance was used to simulate the effects of various hypothetical climatic changes on annual irrigation demand in a humidtemperate climate. The climatic-change scenarios consisted of combinations of changes in temperature, precipitation, and stomatal resistance of plants to transpiration. The objectives were to (1) examine the effects of long-term changes in these components of climatic change on annual irrigation demand, and (2) identify which of these factors would cause the largest changes in annual irrigation demand. Hypothetical climatic changes that only included increases in temperature and changes in precipitation resulted in increased annual irrigation demand, even with a 20 percent increase in precipitation. The model results showed that, for the ranges of changes in temperature and precipitation used in this study, changes in irrigation demand were more sensitive to changes in temperature than to changes in precipitation. Model results also indicated that increased stomatal resistance to transpiration counteracted the effects of increases in temperature and decreases in precipitation on irrigation demand. Changes in irrigation demand were even more sensitive to changes in stomatal resistance than to changes in temperature. A large amount of uncertainty is associated with predictions of future climatic conditions; however, uncertainty associated with natural climatic variability may be larger and may mask the effects of climatic change on irrigation demand.  相似文献   

11.
The possible response of the carbon (C) balance of China's forests to an increase in atmospheric CO(2) concentration and climate change was investigated through a series of simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model, which explicitly represents the effects of climate, CO(2) concentration, and nitrogen deposition on future C sequestration by forests. Two climate change scenarios (CGCM2-A2 and -B2) were used to drive the model. Simulations showed that China's forests were a C sink in the 1990 s, averaging 189 Tg C yr(-1) (about 13% of the global total). This sink peaks around 2020 and then gradually declines to 33.5 Tg C yr(-1) during 2091-2100 without climate and CO(2) changes. Effects of pure climate change of CGCM2-A2 and -B2 without allowing CO(2) effects on C assimilation in plants might reduce the average net primary productivity (NPP) of China's forests by 29% and 18% during 2091-2100, respectively. Total soil C stocks might decrease by 16% and 11% during this period. China's forests might broadly act as C sources during 2091-2100, with values of about 50 g Cm(-2)yr(-1) under the moderate warming of CGCM2-B2 and 50-200 g Cm(-2)yr(-1) under the warmer scenario of CGCM2-A2. An increase in CO(2) might broadly increase future C sequestration of China's forests. However, this CO(2) fertilization effect might decline with time. The CO(2) fertilization effects on NPP by the end of this century are 349.6 and 241.7 Tg C yr(-1) under CGCM2-A2 and -B2 increase scenarios, respectively. These effects increase by 199.1 and 126.6 Tg C yr(-1) in the first 50 years, and thereafter, by 150.5 and 115.1 Tg C yr(-1) in the second 50 years under CGCM2-A2 and -B2 increase scenarios, respectively. Under a CO(2) increase without climate change, the majority of China's forests would be C sinks during 2091-2100, ranging from 0 to 100 g Cm(-2)yr(-1). The positive effect of CO(2) fertilization on NPP and net ecosystem productivity would be exceeded by the negative effect of climate change after 2050. Under the CGCM2-A2 climate scenario and with direct CO(2) effects, China's forests may be a small C source of 7.6 Tg C yr(-1) during 2091-2100. Most forests act as C sources of 0-40 g Cm(-2)yr(-1). Under the CGCM2-B2 climate scenario and with direct CO(2) effects, China's forests might be a small C sink of 10.5 Tg C yr(-1) during 2091-2100, with C sequestration of most forests ranging from 0 to 40 g Cm(-2)yr(-1). Stand age structure plays a more dominant role in determining future C sequestration than CO(2) and climate change. The prediction of future C sequestration of China's forests is very sensitive to the Q(10) value used to estimate maintenance respiration and to soil water availability and less sensitive to N deposition scenario. The results are not yet comprehensive, as no forest disturbance data were available or predicted after 2001. However, the results indicate a range of possible responses of the C balance of China's forests to various scenarios of increase in CO(2) and climate change. These results could be useful for assessing measures to mitigate climate change through reforestation.  相似文献   

12.
Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and mineral N of agricultural soils. We carried out an experiment with a Yolo silt loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent) with two tilled treatments (rototillage and disked and rolled) and a nontilled control. The soil was subsequently sampled throughout a 17-d period. Nine days after tillage, all treatments were lightly sprinkler-irrigated to bring the soil water potential above -10 kPa. After tillage, the soil ammonium and nitrate content increased rapidly relative to the control with highest increases in the disked soil. Mineral N remained higher in the tilled treatments after irrigation. Rototillage and disking increased the CO2 efflux of the soil within 24 h of the disturbance. The increase was higher in the disked soil, which was more than three times the CO2 efflux of the control soil at 0.25 h after tillage. This effect may be due to degassing of dissolved CO2 since microbial respiration did not increase in tilled soils. Irrigation increased the CO2 efflux of all treatments but this was most pronounced in the control soil, which had an order of magnitude increase in CO2 efflux after irrigation. An ancillary experiment carried out under similar conditions but with more frequent sampling showed that increases in CO2 efflux after irrigation were accompanied by increases in soil respiration. This study shows that different tillage implements affect CO2 efflux, nitrate accumulation, and microbial activity, and thus have different effects on soil and atmospheric environmental quality.  相似文献   

13.
Carbon sinks and sources in China's forests during 1901-2001   总被引:1,自引:0,他引:1  
This paper reports the annual carbon (C) balance of China's forests during 1901-2001 estimated using the Integrated Terrestrial Ecosystem C-budget model (InTEC). Annual carbon source and sink distributions are simulated for the same period using various spatial datasets including land cover and leaf area index (LAI) obtained from remote sensing, soil texture, climate, forest age, and nitrogen deposition. During 1901-1949, China's forests were a source of 21.0+/-7.8 Tg C yr(-1) due to disturbances (human activities). Its size increased to 122.3+/-25.3 Tg C yr(-1) during 1950-1987 due to intensified human activities in the late 1950s, early 1960s, 1970s and early 1980s. The forests became large sinks of 176.7+/-44.8 Tg C yr(-1) during 1988-2001, owing to large-scale plantation and forest regrowth in previously disturbed areas as well as growth stimulation by nondisturbance factors such as climatic warming, atmospheric CO(2) fertilization, and N deposition. From 1901 to 2001, China's forests were a small carbon source of 3.32 Pg C, about 32.9+/-22.3 Tg C yr(-1). The overall C balance in biomass from InTEC generally agrees with previous results derived from forest inventories of China's forests. InTEC results also include C stock variation in soils and are therefore more comprehensive than previous results. The uncertainty in InTEC results is still large, but it can be reduced if a detailed forest age map becomes available.  相似文献   

14.
Anaerobic digestion of dairy manure with enhanced ammonia removal   总被引:5,自引:0,他引:5  
Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor.  相似文献   

15.
Previous research has shown that plant diversity influences N and P cycles. However, the effect of plant diversity on complete ecosystem N and P budgets has not yet been assessed. For 20 plots of artificially established grassland mixtures differing in plant diversity, we determined N and P inputs by bulk and dry deposition and N and P losses by mowing (and subsequent removal of the biomass) and leaching from April 2003 to March 2004. Total deposition of N and P was 2.3 +/- 0.1 and 0.2 +/- 0.01 g m(-2) yr(-1), respectively. Mowing was the main N and P loss. The net N and P budgets were negative (-6.3 +/- 1.1 g N and -1.9 +/- 0.2 g P m(-2) yr(-1)). For N, this included a conservative estimate of atmospheric N(2) fixation. Nitrogen losses as N(2)O were expected to be small at our study site (<0.05 g m(-2) yr(-1)). Legumes increased the removal of N with the harvest and decreased leaching of NH(4)-N and dissolved organic nitrogen (DON) from the canopy. Reduced roughness of grass-containing mixtures decreased dry deposition of N and P. Total dissolved P and NO(3)-N leaching from the canopy increased in the presence of grasses attributable to the decreased N and P demand of grass-containing mixtures. Species richness did not have an effect on any of the studied fluxes. Our results demonstrate that the N and P fluxes in managed grassland are modified by the presence or absence of particular functional plant groups and are mainly driven by the management.  相似文献   

16.
在内蒙古贝加尔针茅草原,分别设对照(N0)、1.5 g·m^-2(N15)、3.0 g·m^-2(N30)、5.0 g·m^-2(N50)、10.0 g·m^-2(N100)、15.0 g·m^-2(N150)、20.0 g·m^-2(N200)和30 g·m^-2(N300)(不包括大气沉降的氮量)8个氮素(NH4NO3)梯度和模拟夏季增加降水100 mm的水分添加交互试验,研究氮素和水分添加对草原土壤养分、酶活性及微生物量碳氮的影响。结果表明:氮素和水分添加对草原土壤理化性质和生物学特性有显著影响。随施氮量的增加土壤总有机碳、全氮、硝态氮、铵态氮含量呈增加的趋势,相反,土壤pH值呈降低的趋势。土壤脲酶和过氧化氢酶的活性随施氮量的增加而升高,多酚氧化酶则随施氮量的增加呈下降的趋势。氮素和水分添加对草原土壤微生物量碳氮含量有显著影响,高氮处理(N150、N200和N300)显著降低了微生物碳含量,微生物氮含量随施氮量的增加呈上升趋势。水分添加能够减缓氮素添加对微生物的抑制作用,提高微生物量碳、微生物量氮含量。草原土壤养分、土壤酶活性及土壤微生物量碳氮含量间关系密切,过氧化氢酶与全氮、总有机碳、硝态氮呈显著正相关,多酚氧化酶与铵态氮、硝态氮、全氮呈显著负相关。微生物量氮含量与土壤全氮、铵态氮、硝态氮含量以及过氧化氢酶和磷酸酶活性呈显著正相关,与多酚氧化酶呈负相关;微生物量碳与过氧化氢酶呈负相关,与多酚氧化酶活性呈正相关。  相似文献   

17.
TETA对CO_2的吸收及其动力学参数的推导   总被引:2,自引:0,他引:2  
为了提高CO2的吸收量,选用含四个氮原子的三乙烯四胺(简写为TETA)为吸收剂,在常压下,采用搅拌式反应器对TETA吸收CO2进行了研究。得到TETA吸收CO2的最佳温度为308K、最佳浓度为1.0mol/L,并与常用的醇胺吸收剂一乙醇胺(简写为MEA)、二乙醇胺(简写为DEA)、三乙醇胺(简写为TEA)的吸收效果进行比较,实验结果显示:TETA是一种性能优良的CO2吸收剂。同时分析了各吸收剂对二氧化碳的吸收机理;应用化学动力学理论计算了不同温度下TETA吸收CO2反应的级数,速率常数及反应的平均活化能。计算结果表明,在最佳温度308K时,反应的速率常数最大,反应速率最快,反应级数n=1.6,速率常数k′=0.172,平均活化能Ea=132kJ/mol。  相似文献   

18.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

19.
ABSTRACT: There is mounting evidence that increasing amounts of atmospheric carbon dioxide may lead to significant changes in global climate during the next century. The possible effects of such climatic changes on surface runoff in the Great Basin Region of the western United States has been investigated by applying water balance models to four watersheds in Nevada and Utah. The most probable change, a 2°C increase in average annual temperature coupled with a 10 percent decrease in precipitation, would reduce runoff from 17 to 28 percent of the present mean, with drier basins showing the greatest change. Decreasing precipitation by 25 percent causes runoff reductions of 33 to 51 percent. Equivalent changes to a cooler and wetter climate show corresponding increases in runoff of approximately the same magnitude, but such a shift is not considered likely. Based on projected water requirements for the year 2000, a change to a warmer and drier climate would cause severe water shortages in many parts of the Great Basin.  相似文献   

20.
The Summitville Mine was a high-elevation (3500 m) gold mine in southwestern Colorado. The mine was abandoned in 1992, leaving approximately 200 ha of disturbance comprised partially of an open pit, a cyanide heap leach pad, and two large waste rock piles. Reclamation of these mine facilities is challenging due to extreme climatic conditions in conjunction with high acid-production potential and low organic matter content of waste materials on site. In addition, stockpiled topsoil at the site is acidic and biologically inactive due to long-term storage, and may not be suitable for plant growth. The purpose of this study was to evaluate the effects of organic amendments (mushroom compost vs. biosolids) and topsoil (stockpiled vs. nonstockpiled) on aboveground biomass and plant trace element uptake. An on-site field study was established in 1995 to identify the most effective combination of treatments for successful reclamation of on-site waste rock materials. Incorporation of organic matter significantly increased aboveground biomass, with mushroom compost being more effective than biosolids, but did not significantly influence trace element uptake. Conversely, the use of topsoil did not affect aboveground biomass, but did influence trace element uptake. Treatments that received topsoil supported plant growth with significantly higher trace element tissue concentrations than treatments that did not receive topsoil. In general, it was found that waste rock could be directly revegetated when properly neutralized, fertilized, and amended with organic matter. Additionally, stockpiled topsoil, when neutralized with lime, supported plant growth equivalent to that on nonstockpiled topsoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号