首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new approach using an anionic/nonionic mixed surfactant, sodium dodecyl sulphate (SDS) with Triton X-100 (TX100), was utilized for the desorption of phenanthrene from an artificial contaminated natural soil in an aim to improve the efficiency of surfactant remediation technology. The experimental results showed that the presence of SDS not only reduced the sorption of TX100 onto the natural soil, but also enhanced the solubilization of TX100 for phenanthrene, both of which resulted in the distribution of phenanthrene in soil-water systems decreasing with increasing mole fraction of SDS in surfactant solutions. These results can be attributed to the formation of mixed micelles in surfactant solution and the corresponding decrease in the critical micelle concentration of TX100 in mixed solution. The batch desorption experiments showed that the desorption percentage of phenanthrene from the contaminated soil with mixed solution was greater than that with single TX100 solution and appeared to be positively related to the mole fraction of SDS in surfactant solution. Thus, the anionic/nonionic mixed surfactants are more effective for the desorption of phenanthrene from the contaminated soil than a single nonionic surfactant.  相似文献   

2.
采用平衡振荡法,研究了砂土对非离子表面活性剂Triton X-100的吸附特征。结果表明,砂颗粒对Triton X-100的吸附能力总体较低,单位吸附含量均<1.1 mg/g;砂颗粒吸附Triton X-100过程中存在显著的吸附剂浓度效应,砂颗粒上Triton X-100含量随着固液比(吸附剂浓度)的增大而减小;吸附容量qm与平衡常数KL值随固液比变化而变化,Langmuir方程适用范围是起始浓度C0相对较小的固液吸附体系;0.5~1 mm石英砂的吸附能力略>0.2~0.5 mm石英砂,0.5~1 mm和0.2~0.5 mm石英砂吸附Triton X-100变化特征具有显著的一致性,采用高斯拟合模型可以反映出石英砂吸附Triton X-100的变化规律,相关系数R2均>0.98。  相似文献   

3.
Zhu L  Feng S 《Chemosphere》2003,53(5):459-467
Water solubility enhancements of naphthalene (Naph), acenaphthylene (Acen), anthracene (An), phenanthrene (Phen) and pyrene (Py) by micellar solutions of single and mixed anionic-nonionic surfactants were measured and compared. Effects of typical inorganic ions, such as NH(4)(+), Na(+) and Mg(2+) coexisted with the organic pollutants (in soils) on water solubilities of polycyclic aromatic hydrocarbons (PAHs) in the presence of single and mixed surfactants were also investigated. Solubilities of PAHs in water are greatly enhanced in a linear fashion by each of Triton X-100 (TX100), Triton X-305 (TX305), Brij 35, and sodium dodecyl sulfate (SDS). Solubility enhancement efficiencies of surfactants above the critical micelle concentration (CMC) follow the order of TX100>Brij 35>TX305>SDS. PAHs are solubilized synergistically in mixed anionic-nonionic surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX305>SDS-Brij 35>SDS-TX100. Synergistic effect of a given mixed-surfactant solution on different PAHs also appears to be linearly related to the solute logK(ow). The noted synergism for the mixed surfactants is attributed to the formation of mixed micelles, the lower CMC of the mixed-surfactant solutions, and the increase of the solute's molar solubilization ratio or micellar partition coefficients (K(mc)) because of the lower polarity of the mixed micelles. Suitable quantity of inorganic cations can enhance the solubilization capacities of anionic-nonionic mixed surfactants, the effect being Mg(2+)>NH(4)(+)>Na(+). The water solubility of pyrene was slightly increased by anthracene and significantly increased by 1,2,3-TCB in the presence of SDS-Brij 35. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus the remediation cost.  相似文献   

4.
The sorption of surfactants onto soils has a significant effect on the performance of surfactant enhanced desorption. In this study, the efficiency of surfactants in enhancing desorption for polycyclic aromatic hydrocarbons (PAHs) contaminated soils relative to water was evaluated with a term of relative efficiency coefficient (REC). Since the sorption of surfactants onto soils, surfactants only enhanced PAH desorption when REC values were larger than 1 and the added surfactant concentration was greater than the corresponding critical enhance desorption concentration (CEDC), which was defined as the corresponding surfactant concentration with REC=1. A model was utilized to describe and predict the REC and CEDC values for PAH desorption. The model and experimental results indicated that the efficiency of surfactants in enhancing PAH desorption showed strong dependence on the soil composition, surfactant structure and PAH properties. These results are of practical interest for the selection of surfactant to optimize soil remediation technologies.  相似文献   

5.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

6.
Zhao B  Zhu L  Li W  Chen B 《Chemosphere》2005,58(1):33-40
The effects of mixed anionic-nonionic surfactants, sodium dodecyl sulfate (SDS) mixed with Tween80 (TW80), Triton X-100 (TX100) and Brij35 respectively on the solubility enhancement and biodegradation of phenanthrene in the aqueous phase were investigated. The efficiency of solubilization and biodegradation of phenanthrene in single-, and mixed-surfactant solutions were also compared. The critical micellar concentrations (CMCs) of mixed surfactants were sharply lower than that of sole SDS. The degree of solubility enhancements by the mixed surfactants followed the order of SDS-TW80>SDS-Brij35>SDS-TX100. Synergistic solubilization was observed in the mixed surfactant solutions, in which the molar ratios of SDS to nonionic surfactant were 1:0, 9:1, 7:3, 5:5, 3:7, 1:9 and 0:1 while the total concentration of surfactants was kept at 5.0 and 10.0 mM, respectively. SDS-Brij35 exhibited more significant degree of synergistic solubility enhancement for phenanthrene. The mixed surfactants exhibited no inhibitory effect on biodegradation of phenanthrene. Substantial amounts of the solubilized phenanthrene by mixed surfactants were completely degraded by phenanthrene-degrading microorganisms within 96 h. The results suggested that anionic-nonionic surfactants would improve the performance of remediation of PAH-contaminated soils.  相似文献   

7.
比较研究了蓖麻油硫酸盐(SCOS)与普通表面活性剂Triton X-100(TX100)、Tween 80(TW80)、Brij35、十二烷基苯磺酸钠(SDBS)和十二烷基硫酸钠(SDS)等对菲的增溶和洗脱作用.结果表明,菲表观溶解度与SCOS的浓度呈单一线性关系,SCOS微乳液对菲的增溶比SR=0.0314为最大,菲在微乳相和水相之间的分配系数logKem=4.44,大于菲在胶束相和水相之间的分配系数(logKmc).1:10土-水体系下,SCOS微乳液对菲污染土壤的清洗速率最快,清洗效率最高.SCOS有望成为土壤有机污染淋洗修复的增效试剂.  相似文献   

8.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

9.
Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils.  相似文献   

10.
Zhou W  Zhu L 《Chemosphere》2005,60(9):1237-1245
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.  相似文献   

11.
A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.  相似文献   

12.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

13.
工艺参数对表面活性剂洗涤修复PAHs污染土壤的影响   总被引:1,自引:0,他引:1  
采用土壤洗涤(soil-washing)技术,分别用TritonX-100和Tween-80为强化洗涤剂研究了搅拌强度、洗涤时间、表面活性剂浓度、液固比、温度和间歇搅拌6个工艺参数对PAHs污染土壤洗涤效果的影响。通过一系列烧杯搅拌实验得到最佳洗涤工艺参数。TritonX-100和Tween-80的最佳洗涤时间分别是30 min和60 min,其他工艺参数最佳条件均相同。分别是搅拌强度为250 r/min,表面活性剂浓度为5 g/L,液固比为10∶1,温度为室温和连续搅拌。在此最佳工艺参数条件下,污染土中PAHs的残留率<10%,基本上满足目标污染物的修复目标。应用表面活性剂强化洗涤技术修复PAHs污染土壤是合理和可行的。  相似文献   

14.
Effects of surfactants on extraction of phenanthrene in spiked sand   总被引:9,自引:0,他引:9  
Chang MC  Huang CR  Shu HY 《Chemosphere》2000,41(8):1295-1300
Problems associated with polynuclear aromatic hydrocarbon (PAH) contaminated site in environmental media have received increasing attention. To resolve such problems, innovative in situ methods are urgently required. This work investigated the feasibility of using surfactants to extract phenanthrene on spiked sand in a batch system. Phenanthrene was spiked into Ottawa sand to simulate contaminated soil. Six surfactants, Brij 30 (BR), Triton X-100 (TR), Tergitol NP-10 (TE), Igepal CA-720 (IG), sodium dodecyl sulfate (SDS) and hexadecyl trimethyl ammonium bromide (HTAB) were used. Adjusting the extraction time, mixing speed and surfactant concentration yielded the optimum extracting conditions. The concentration of phenanthrene was identified with HPLC. Under the experimental conditions, results indicated that those surfactants were highly promising on site remediation since the residual phenanthrene concentration was effectively reduced. The optimum operating conditions were obtained at 30 min, 125 rpm and surfactant concentrations in 4%.  相似文献   

15.
Maturi K  Reddy KR 《Chemosphere》2006,63(6):1022-1031
Thousands of sites are contaminated with both heavy metals and organic compounds and these sites pose a major threat to public health and the environment. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in low permeability soils. This paper presents the feasibility of using cyclodextrins in electrokinetic remediation for the simultaneous removal of heavy metals and polycyclic aromatic hydrocarbons (PAHs) from low permeability soils. Kaolin was selected as a model low permeability soil and it was spiked with phenanthrene as well as nickel at concentrations of 500 mg kg-1 each to simulate typical mixed field contamination. Bench-scale electrokinetic experiments were conducted using hydroxypropyl beta-cyclodextrin (HPCD) at low (1%) and high (10%) concentrations and using deionized water in control test. A periodic voltage gradient of 2VDC cm-1 (with 5 d on and 2 d off) was applied to all the tests, and 0.01 M NaOH was added during the experiments to maintain neutral pH conditions at anode. In all tests, nickel migrated as Ni2+ ions towards the cathode and most of it was precipitated as Ni(OH)2 within the soil close to the cathode due to high pH condition generated by electrolysis reaction. The solubility of phenanthrene in the flushing solution and the amount of electroosmotic flow controlled the migration and removal of phenanthrene in all the tests. Even though high flow was generated in tests using deionized water and 1% HPCD, migration and removal of phenanthrene was low due to low solubility of phenanthrene in these solutions. The test with 10% HPCD solution showed higher solubility of phenanthrene which caused it migrate towards the cathode, but further migration and removal was retarded due to reduced electric current and electroosmotic flow. Approximately one pore volume of flushing resulted in approximately 50% removal of phenanthrene from the soil near the anode. Sustained higher electroosmotic flow with higher concentration cyclodextrin and maintaining low soil pH near cathode should be investigated to increase removal efficiency of both phenanthrene and nickel.  相似文献   

16.
The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L(-1) of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.  相似文献   

17.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

18.
系统评述了表面活性剂增效修复土壤有机污染的原理、研究现状及存在的问题.  相似文献   

19.
Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles.  相似文献   

20.
表面活性剂增效修复土壤有机污染研究进展   总被引:9,自引:0,他引:9  
系统评述了表面活性剂增效修复土壤有机污染的原理、研究现状及存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号