首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peri-urban soils of Huelva, one of the first industrial cities in Spain, are subject to severe pollution problems primarily due to past poor management of industrial wastes and effluents. In this study, soil cores were collected in seven sites potentially contaminated with toxic chemicals arising from multiple anthropogenic sources, in order to identify trace elements of concern and to assess human health risks associated with them. In most soil core samples, total concentrations of As (up to 4,390 mg kg−1), Cd (up to 12.9 mg kg−1), Cu (up to 3,162 mg kg−1), Pb (up to 6,385 mg kg−1), Sb (up to 589 mg kg−1) and Zn (up to 4,874 mg kg−1) were by more than one order of magnitude greater than the site-specific reference levels calculated on the basis of regional soil geochemical baselines. These chemicals are transferred from the hazardous wastes, mainly crude pyrite and roasted pyrite cinders, to the surrounding soils by acid drainage and atmospheric deposition of wind-blown dust. Locally, elevated concentrations of U (up to 96.3 mg kg−1) were detected in soils affected by releases of radionuclides from phosphogypsum wastes. The results of the human health risk-based assessment for the hypothetical exposure of an industrial worker to the surface soils indicate that, in four of the seven sites monitored, cancer risk due to As (up to 4.4 × 10−5) is slightly above the target health risk limit adopted by the Spanish legislation (1 × 10−5). The cumulative non-carcinogenic hazard index ranged from 2.0 to 12.2 indicating that there is also a concern for chronic toxic effects from dermal contact with soil.  相似文献   

2.
The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg−1) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg−1, from 1,130 to 3,830 mg K kg−1, from 61.8 to 488 mg Ca kg−1, from 864 to 2,020 mg Mg kg−1, from 0.40 to 147 mg Fe kg−1, from 15.1 to 124 mg Zn kg−1, from 0.10 to 59.1 mg Cu kg−1, and from 6.7 to 26.6 mg Mn kg−1. Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.  相似文献   

3.
Concentrations of trace elements in wheat grain sampled between 1967 and 2003 from the Swedish long-term soil fertility experiments were analyzed using ICP-MS. The long-term effect of inorganic and organic fertilization on trace metal concentrations was investigated including the impact of atmospheric deposition and myccorhiza, whereas other factors such as soil conditions, crop cultivar, etc. are not discussed in this paper. Mean values derived from 10 experimental sites were reported. Significantly declining Pb and Cd concentrations in wheat grain could be explained by lower atmospheric deposition. Mean Se contents in all samples were 0.031 mg kg−1 grain dry weight. No samples had sufficiently high Se concentrations for human (0.05 mg Se kg−1) or animal demand (0.1 mg Se kg−1). Concentrations of Co in wheat grain were extremely low, 0.002–0.005 mg Co kg−1 grain dry weight, and far below the minimum levels required by animals, which applied to all fertilizer treatments. A doubling of Mo concentrations in grain since 1975 resulted in Cu/Mo ratios often below one, which may cause molybdenosis in ruminants. The increase in Mo concentrations in crops correlated with the decline in sulfur deposition. Concentrations of Cu and Fe declined in NPK-fertilized wheat as compared to unfertilized or manure-treated wheat. Very low concentrations of Se and Co and low concentrations of Fe and Cu require attention to counteract risks for deficiencies. The main characteristic of the study is that there are few significant changes over time between different fertilizer treatments, but throughout there are low concentrations of most trace elements in all treatments. In general, good agreement between concentrations in wheat from the long-term fertility experiments and the national monitoring program indicate that values are representative.  相似文献   

4.
During combustion, most of the inorganic nutrients and trace elements in the fuel are retained and enriched in the ash. However, here we show that, due to the low total heavy metal concentrations, the flue gas cleaning residue (i.e. the fly ash) originating from the wet scrubber device at a medium-sized (32 MW) municipal district heating plant, is a potential forest fertilizer. Furthermore, the easily soluble calcium (1,980 mg kg−1; d.w.) and phosphorus (50 mg kg−1; d.w.) concentrations indicate that the flue gas cleaning residue is a potential agent for soil remediation and for improving soil fertility.  相似文献   

5.
Phthalates are animal carcinogens and may cause death or tissue deformities. Samples of feedstuffs collected in 2005 and 2006 from industrial feed manufacturers in the Czech Republic were analysed for contamination with phthalic acid esters (PAEs), specifically di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP). Samples of feed additives, premixes and raw materials were collected (year 2005, n = 26). For soybean oil, the total volume of phthalates measured (DBP + DEHP) reached a level of 131.42 mg kg−1; for rapeseed oil, fish meal and animal fats, the levels measured were 15.00, 7.96 and 58.87 mg kg−1, respectively. The lowest level of DBP + DEHP was found in corn (2.03 mg kg−1). Since phthalates were detected, samples of feed additives (n = 28) and raw materials (n = 28) were collected again in 2006. The highest levels of DBP + DEHP were found in raw materials containing fat. Phthalate levels in rapeseed oil samples ranged from 1.38 to 32.40 mg kg−1 DBP + DEHP. For feed additives, contamination levels in vitamins and amino acids ranged from 0.06 to 3.15 and 1.76 to 4.52 mg kg−1 DBP + DEHP, respectively. Here, we show that the levels of PAEs found in cereals such as wheat, barley and corn may be regarded as being alarmingly high, because cereals make up the largest proportion of compound feed of farm animals.  相似文献   

6.
Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg−1 near the mine in a regional background of 1–16 mg kg−1. Total Cr concentrations were between 18 and 740 mg kg−1 near the mine in a regional background of 26–143 mg kg−1. Total Pb concentrations were between 12 and 430 mg kg−1 near the mine in a regional background of 9–23 mg kg−1. Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.  相似文献   

7.
Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that Pb concentrations in fifty samples of topsoil ranged from 456 to 21.5 mg kg−1, with each mean concentration of six sampling lands exceeding the national standard (50 mg kg−1); while Pb concentrations in edible portions of thirty-two vegetable samples ranged from 0.009 to 2.20 mg kg−1, with four sampling sites exceeding the national sanitary standard (0.2 mg kg−1). A significant correlation (r = 0.971, P < 0.01) of Pb contents in the acid-extractable fractions by BCR approach and the vegetables was observed, which indicates that the acid-extractable Pb is useful for evaluating the metal bioavailability for plants and potential risk for human health in soils. The determination of lead isotope ratios in different chemical forms of soils by BCR sequential extraction procedures provides useful information on the Pb isotopic composition associated with different soil fractions (especially in the acid-extractable fractions), and the result is helpful for the further study on controlling and reducing Pb contamination in vegetable-growing soils.  相似文献   

8.
Hg transfer from contaminated soils to plants and animals   总被引:1,自引:0,他引:1  
Understanding the transfer of mercury (Hg) from soil to crops is crucial due to Hg toxicity and Hg occurrence in terrestrial systems. Previous research has shown that available Hg in soils contributes to plant Hg levels. Plant Hg concentrations are related to soil conditions and plant characteristics. Mechanistic models describing such soil–plant interactions are however difficult to quantify. Here we performed a field study in agricultural, mining and industrial areas in Portugal to evaluate potential food chain risks. The uptake of Hg by Italian ryegrass, ryegrass, orchard grass, collard greens and rye was measured to calculate daily intakes (DI) of Hg for cows and sheep grazing. A total of 136 soil samples and 129 plant samples were analysed. Results show that total Hg concentrations ranged from 0.01 to 98 mg kg−1 in soils; 0.01–5.4 mg kg−1 in shoots and 0.01–42 mg kg−1 in roots. Calculated DI ranged from 0.18 to 132 mg d−1 for cows, and from 0.028 to 23 mg d−1 for sheep. In 27 grassland sites, daily intakes exceeded the acceptable daily intake of both cows and sheep in view of food safety considering Hg in animal kidneys evidencing potential risks to human health. The transfer of Hg from soil to crops was described using empirical Freundlich-type functions. For ryegrass, orchard grass and collard greens, the soil-to-root or soil-to-shoot transfer of Hg appeared to be controlled by the total soil Hg concentration and levels of Alox and Feox. Empirical functions allowed us to obtain realistic estimates of Hg levels in crops and can be used as an alternative to mechanistic models when evaluating food chain risks of Hg contamination in agricultural soils.  相似文献   

9.
Kidney stones (urinary calculi) have become a global scourge since it has been recognized as one of the most painful medical problems. Primary causative factors for the formation of these stones are not clearly understood, though they are suspected to have a direct relationship to the composition of urine, which is mainly governed by diet and drinking water. Sixty nine urinary calculi samples which were collected from stone removal surgeries were analyzed chemically for their Na, K, Ca, Mg, Cu, Zn, Pb, Fe and phosphate contents. Structural and mineralogical properties of stones were studied by XRD and FT-IR methods. The mean contents of trace elements were 1348 mg kg−1 (Na); 294 mg kg−1 (K); 32% (Ca); 1426 mg kg−1 (Mg); 8.39 mg kg−1 (Mn); 258 mg kg−1 (Fe); 67 mg kg−1 (Cu); 675 mg kg−1 (Zn); 69 mg kg−1 (Pb); and 1.93% (PO43−). The major crystalline constituent in the calculi of Sri Lanka is calcium oxalate monohydrate. Principal component analysis was used to identify the multi element relationships in kidney stones. Three components were extracted and the first component represents positively correlated Na-K-Mg-PO43− whereas the␣second components represent the larger positively weighted Fe–Cu–Pb. Ca–Zn correlated positively in the third component in which Mn–Cu correlated negatively. This study indicates that during the crystallization of human urinary stones, Ca shows more affinity towards oxalates whereas other alkali and alkaline earths precipitate with phosphates.Contribution from the Environmental Geology Research Group (EGRG), Department of Geology, University of Peradeniya, Sri Lanka.  相似文献   

10.
Lithium is found in trace amounts in all soils. It is also found in plants and in nearly all the organs of the human body. Low Li intake can cause behavioral defects. Thus, this study was conducted to investigate the concentration and distribution of water-soluble Li in soils of the Jordan Valley and its concentration in citrus trees and some important food crops in view of the significant implications of Li for human health. The concentration of soluble Li was measured in 180 soil samples collected at two depths (0–20 and 20–40 cm) whereas its content was determined in fully expanded leaves collected from citrus and different vegetable crops. Concentrations of soluble Li in soils vary from 0.95 to 1.04 mg l−1 in topsoil and from 1.06 to 2.68 mg l−1 in subsoil, while Li concentration in leaves ranged from 2 to 27 mg kg−1 DM. Lithium concentrations in leaves of crops of the same family or different families vary with location in the valley; i.e., they decreased from north to south. It is concluded that soluble Li in soils and the plant family did not solely affect Li transfer in the food chain. In addition, soil EC, Ca, Mg, and Cl, which increased from north to south, might adversely affect plant Li uptake. The current study also showed that consuming 250–300 g FW of spinach day−1 per person is recommended to provide consumers with their daily Li requirement necessary for significant health and societal benefits.  相似文献   

11.
Distribution of acid volatile sulfur (AVS) and the simultaneously extracted metals (SEM: Cu, Pb, Zn, Cd, Ni) in sediment profiles has been studied at five sites in Pearl River estuary, China. Of the five sampling locations, Nos.1 and 2 are in the middle shoal, Nos.3 and 4 in the west shoal and No. 5 locates to the south of the estuary. The AVS content in the sediments of the middle shoal varies in a small range (0.25–4.06 μmol g−1), while that of west shoal increases with depth from 0 to ultimately 26.09 μmol g−1. The SEM concentration in the sediment profiles at location Nos. 1, 2 and 5 is generally in the range of 0.95±0.2 μmol g−1 with a slight upward increase, while that in the sediment of west shallows are much higher (1.43–2.42 μmol g−1) with a significant upward increase, especially in the upper layer of ca. 15 cm. The observed upward increase of SEM content at all the sites implies that heavy metal contamination of sediment in the Pearl River estuary is increasing. Calculations of the excess heavy metal content which is defined by SEM-AVS molar difference suggests that the upper sediment in the Pearl River estuary, especially on the west shallows, could be a source of heavy metal contaminants and may cause toxicity to the benthos. The site-specific distribution patterns in the AVS and SEM profiles were interpreted according to the hydrogeochemistry of deposition environments.  相似文献   

12.
The use of higher plants to remediate contaminated land is known as phytoremediation, a term coined 15 years ago. Among green technologies addressed to metal pollution, phytoextraction has received increasing attention starting from the discovery of hyperaccumulator plants, which are able to concentrate high levels of specific metals in the above-ground harvestable biomass. The small shoot and root growth of these plants and the absence of their commercially available seeds have stimulated study on biomass species, including herbaceous field crops. We review here the results of a bibliographical survey from 1995 to 2009 in CAB abstracts on phytoremediation and heavy metals for crop species, citations of which have greatly increased, especially after 2001. Apart from the most frequently cited Brassica juncea (L.) Czern., which is often referred to as an hyperaccumulator of various metals, studies mainly focus on Helianthus annuus L., Zea mays L. and Brassica napus L., the last also having the greatest annual increase in number of citations. Field crops may compensate their low metal concentration by a greater biomass yield, but available data from in situ experiments are currently very few. The use of amendments or chelators is often tested in the field to improve metal recovery, allowing above-normal concentrations to be reached. Values for Zn exceeding 1,000 mg kg−1 are found in Brassica spp., Phaseolus vulgaris L. and Zea mays, and Cu higher than 500 mg kg−1 in Zea mays, Phaseolus vulgaris and Sorghum bicolor (L.) Moench. Lead greater than 1,000 mg kg−1 is measured in Festuca spp. and various Fabaceae. Arsenic has values higher than 200 mg kg−1 in sorghum and soybean, whereas Cd concentrations are generally lower than 50 mg kg−1. Assisted phytoextraction is currently facilitated by the availability of low-toxic and highly degradable chelators, such as EDDS and nitrilotriacetate. Currently, several experimental attempts are being made to improve plant growth and metal uptake, and results are being achieved from the application of organic acids, auxins, humic acids and mycorrhization. The phytoremediation efficiency of field crops is rarely high, but their greater growth potential compared with hyperaccumulators should be considered positively, in that they can establish a dense green canopy in polluted soil, improving the landscape and reducing the mobility of pollutants through water, wind erosion and water percolation.  相似文献   

13.
The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions.  相似文献   

14.
The bioavailability of arsenic (As) in the soil environment is largely governed by its adsorption–desorption reactions with soil constituents. We have investigated the sorption–desorption behaviour of As in four typical Bangladeshi soils subjected to irrigation with As-contaminated groundwater. The total As content of soils (160 samples) from the Laksham district ranged from <0.03 to approximately 43 mg kg−1. Despite the low total soil As content, the concentration of As in the pore water of soils freshly irrigated with As-contaminated groundwater ranged from 0.01 to 0.1 mg l−1. However, when these soils were allowed to dry, the concentration of As released in the pore water decreased to undetectable levels. Remoistening of soils to field moisture over a 10-day period resulted in a significant (up to 0.06 mg l−1) release of As in the pore water of soils containing >10 mg As kg−1 soil, indicating the potential availability of As. In soils containing <5 mg As kg−1, As was not detected in the pore water. A comparison of Bangladeshi soils with strongly weathered long-term As-contaminated soils from Queensland, Australia showed a much greater release of As in water extracts from the Australian soils. However, this was attributed to the much higher loading of As in these Australian soils. The correlation of pore water As with other inorganic ions (P, S) showed a strongly significant (P < 0.001) relationship with P, although there was no significant relationship between As and other inorganic cations, such as Fe and Mn. Batch sorption studies showed an appreciable capacity for both AsV and AsIII sorption, with AsV being retained in much greater concentrations than AsIII.  相似文献   

15.
Element analysis of the annual increments in a longitudinal section from the tusk of a female dugong Dugong dugon (Müller) from Exmouth, Western Australia, was carried out by X-ray fluorescence-imaging, inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS). Nine elements (Ba, Ca, Fe, Li, Mg, Na, P, Sr and Zn) were present in concentrations amenable to determination by these techniques. Most elements revealed both long-term trends and shorter, year-to-year, variations. For example, sodium concentrations increased from 0.55 to 0.72% with the age of the dugong. Strontium concentrations (mean 0.17%) were closely correlated (r = 0.86) with those of barium (mean 4.5 mg kg−1). Zinc concentrations increased from ∼70 to 170 mg kg−1 with dugong age, but also showed shorter-term fluctuations of ∼30 mg kg−1 that were correlated (r = 0.41) with mean annual Fremantle sea level (a measure of the Southern Oscillation Index and strength of the Leeuwin Current). The concentrations of the elements and correlations with year and between pairs of elements are discussed. Received: 10 January 1997 / Accepted: 21 April 1997  相似文献   

16.
Arsenic contamination in water,soil, sediment and rice of central India   总被引:1,自引:0,他引:1  
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.).  相似文献   

17.
We investigated the spatial distribution of Pb in soil and dust samples collected from 54 sites in Shenyang city, Liaoning province, Northeast China. Soil background Pb concentration was 22 mg kg−1 and control values from non-industrial areas were 33 mg kg−1 for soil and 38 mg kg−1 for dust. Soil Pb concentrations varied widely, ranging from 26 to 2911 mg kg−1, with a mean concentration of 200 mg kg−1, 9 times the background value and 6 times the control value. There was great variation in soil Pb, with a coefficient of variation (CV) of 1.06 and a standard deviation (SD) of 212 mg kg−1. Dust Pb concentrations fluctuated from 20 to 2810 mg kg−1, with a mean value of 220 mg kg−1, almost 6 times the control value. No significant differences in distribution were observed between soil Pb and dust Pb. The highest Pb concentration was observed in Tiexi district in an industrial area. Soil Pb concentration decreased with depth and with distance from the pollution source. Lead concentrations initially changed little but then decreased with distance from the roadside, and were generally higher on the east side of roads than on the west. Lead contents in different categories of urban area differed substantially with dust and soil Pb concentrations decreasing in the sequence: industrial >business >mixed (residential, culture and education)> reference areas.  相似文献   

18.
This research focuses on the heavy metal contamination of the paddy soils and rice from Kočani Field (eastern Macedonia) resulting from irrigation by riverine water impacted by past and present base-metal mining activities and acid mine drainage. Very high concentrations of As, Cd, Cu, Pb and Zn were found in the paddy soils (47.6, 6.4, 99, 983 and 1,245 μg g−1) and the rice (0.53, 0.31, 5.8, 0.5 and 67 μg g−1) in the western part of Kočani Field, close to the Zletovska River, which drains the mining facilities of the Pb–Zn mine in Zletovo. In terms of health risk, the observed highest concentrations of these elements in the rice could have an effect on human health and should be the subject of further investigations.  相似文献   

19.
Cd concentrations in mobile phases of soil are more representative than total Cd concentration for estimating Cd bioavailability, physicochemical reactivity and mobility. In this study, selective sequential extraction procedures were used to determine Cd in different soil phases. Soil samples and plants grown in these soils were collected from a serpentine and copper-mining area in Maden-Elazig-Turkey. The extracted fractions were exchangeable/carbonate, reducible-iron/manganese oxides, oxidizable-organic matter and sulfides, and residual phases except silicates. Concentrations of Cd in soils and plant samples were determined by flame atomic absorption spectrometry and inductively coupled plasma-mass spectrometry. We found that Cd concentrations in the EDTA and NH2OH·HCl extracts are higher in most soil samples compared to the other extracts. We conclude that Cd levels in mobile phases are unexpectedly high. The observed Cd concentrations are in ranges of 0.03–3.4 mg kg−1 for soil and 0.02–2.5 mg kg−1 for plant parts. The percentages of cadmium up to 56% in exchangeable and carbonates fractions were observed to be significantly higher than in those values less than 2% reported in literature. This study has shown that the modified extraction method can be usefully applied to determine Cd concentrations in potentially mobile phase of soil. Furthermore, it was concluded that Brassicasea and Rumex leaves can be used as hyperaccumulator plants because their translocation factor and/or enrichment coefficient values were found to be higher than 1.0.  相似文献   

20.
The influence of naturally occurring uraniferous black shales on cadmium, molybdenum and selenium concentrations in soils and plants is examined. The possible implications of element concentrations to animal and human health are considered for the Deog-Pyoung area. Geochemical surveys have been undertaken within 13 river tributary valleys in the area underlain by uraniferous black shales and black slates or grey chlorite schists. Sampling of rocks, soils and plants has been carried out along transect lines within each valley. Samples were analysed for trace elements by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and for uranium by Neutron Activation Analysis (NAA). Soil pH, cation exchange capacity, loss on ignition and particle size distribution have been measured for selected samples. Average trace element concentrations of the Okchon uraniferous black shales were 6.3 μg g−1 Cd, 136 μg g−1 Mo and 8.6 μg g−1 Se. Soils derived from these rocks tend to reflect their extreme geochemical composition. Trace element concentrations in alluvial soils derived in part from these black shales averaged 1.2 μg g−1 Cd, 20 μg g−1 Mo and 1.5 μg g−1 Se. Trace element concentrations in plants were found to be influenced by those of soils. Cadmium accumulated in tobacco leaves up to 46 μg g−1 (D.M.) and leafy plants such as lettuce contain up to 0.5 μg g−1 Se (D.M.). In addition to total concentrations in soils, soil pH is a major factor influencing uptake of Mo into crop plants and soil texture for Se. Concentrations of trace elements in plants also varied between plant species. The relative concentrations of Cd were found to vary in the order tobacco > lettuce > red pepper > rice grain. Elevated concentrations of Cd in crop plants and in tobacco may possibly have deleterious effects on human health in this area. The low Cu:Mo ratio in rice stalk of 2.65:1 may be associated with disturbed Cu metabolism in ruminant animals which regularly consume this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号