首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 937 毫秒
1.
将再生混凝土骨料以不同比例取代钢渣骨料配制透水混凝土,采用沸煮试验法考察废混凝土骨料对钢渣透水混凝土强度和体积稳定性的影响,结果表明:再生混凝土骨料可改善钢渣透水混凝土强度,减轻钢渣骨料膨胀对透水混凝土体积稳定性的影响,用再生混凝土骨料在改善钢渣骨料透水混凝土性能同时可消纳两种固体废弃物,具有环境效益和社会效益。  相似文献   

2.
为了研究骨料特征对GRC耐久性的影响,以废混凝土再生骨料、废砖再生骨料分别取代GRC中的天然砂,分别采用自然老化和50℃加速老化的方法,研究不同性能特征的骨料对GRC长期性能的影响。结果表明:废混凝土再生骨料、废砖再生骨料表面粗糙、多孔的特征,可减少体系中Ca(OH)_2的含量、减小Ca(OH)_2的结晶尺寸;废砖再生骨料还具有火山灰效应,可消耗体系中Ca(OH)_2,因而其对GRC的耐久性改善作用较废混凝土骨料更显著;两种骨料具有的特征不但可提高GRC基体的抗折强度,还可减轻玻璃纤维被腐蚀的程度,有利于GRC耐久性的改善。  相似文献   

3.
研究了废混凝土粉以不同取代率取代建筑砂浆中的天然砂对砂浆的和易性及强度的影响,结果表明,废混凝土粉可以取代建筑砂浆中的部分天然砂配制再生骨料砂浆.  相似文献   

4.
为了再利用建筑垃圾,节约天然骨料资源,试验骨料全部采用废混凝土,研究水灰比、胶骨比及减水剂对废混凝土再生骨料透水混凝土性能的影响。结果表明:在胶骨比不变时,水灰比增加,抗压强度增加、孔隙率降低;在水灰比不变时,胶骨比增加,抗压强度增加、孔隙率降低;减水剂可以改善拌合物的和易性,从而提高抗压强度,降低孔隙率,但加入量不宜过大;用全废混凝土完全可配制出符合规范要求的透水混凝土。  相似文献   

5.
通过混凝土配合比设计试验采用等量取代普通骨料的方法,研究不同掺量连续级配再生骨料对混凝土拌合物和易性及混凝土立方体抗压强度影响。主要采取对照组与不同处理组拌合物和易性、不同龄期试件抗压强度等的对比试验得出试验结果。试验结果表明连续级配混凝土再生骨料的掺量对混凝土的和易性及强度均有一定的影响并呈线性变化。通过试验数据结合理论分析得出在再生骨料混凝土配合比设计中,其流动性的大小受到混凝土再生骨料及粉煤灰掺量的影响;再生骨料混凝土的早期强度与拌合物的搅拌时间有直接关系,试验分析得出为提高混凝土早期抗压强度,混凝土再生骨料混凝土配制时其搅拌时间应适当延长;同时,为提高混凝土的和易性、早期及后期抗压强度粉煤灰的掺量百分比应随连续级配混凝土再生骨料掺量的增加而提高。利用试验研究成果,可有效提高混凝土再生骨料的利用量,保障再生骨料混凝土的抗压强度,提高建筑废渣的利用率减轻生态环境压力达到节能减排的目的。同时又能大幅度降低混凝土工程的成本具有一定的经济效益和社会效益。  相似文献   

6.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

7.
专利资讯     
专利名称:一种再生骨料混凝土的配合比设计方法 专利申请号:CN201410323257.0公开号:CN104261731A 申请日:2014.07.08公开日:2015.01.07 申请人:北京东方建宇混凝土科学技术研究院有限公司 本发明提供一种再生骨料混凝土配合比的设计方法,包括如下步骤:(1)设定需要配制的再生骨料混凝土的设计强度,根据JGJ55—2011《普通混凝土配合比设计规程》中规定的设计方法,计算该设计强度下再生骨料混凝土的水胶比、  相似文献   

8.
针对建筑垃圾排放量大、利用率低以及石材路障消耗天然石材等问题,以废混凝土作为骨料,制作混凝土再生骨料型球型路障,试验研究了废混凝土取代率、减水剂用量等因素对其性能及外观效果的影响。结果表明废混凝土再生骨料可完全取代天然骨料制球型路障通过调节减水剂掺量,可改善制品的外观质量,减少表面孔洞发生。  相似文献   

9.
采用4种不同成型方式分别制作再生骨料透水混凝土和天然骨料透水混凝土,研究其强度和透水性能的变化规律.试验结果表明:手工振捣+平板振动成型方式制作的透水混凝土,具有较高的强度与优良的透水性能,为最佳的成型方式;同配比时,再生骨料透水混凝土较天然骨料混凝土强度更高,透水性能也较好.  相似文献   

10.
针对废混凝土排放量巨大、再利用程度低以及GRC长期性能下降的问题,采用50℃热水加速老化的试验方法,研究了废混凝土取代天然砂、粉煤灰和硅灰对GRC性能的影响。结果表明,废混凝土骨料取代率为30%时,可提高GRC的抗折强度,同时还可以减缓GRC抗折强度下降的速度;粉煤灰取代率30%时,对GRC早期抗折强度不利,但可提高其后期强度,同时可较大程度地减缓GRC抗折强度下降的速度;粉煤灰取代率30%,同时废混凝土骨料取代率30%时,对GRC抗折强度及抗折强度下降速度的影响较粉煤灰单独使用时效果要好;粉煤灰与硅灰同时分别以20%及10%取代水泥时,对GRC抗折强度有较大的提高作用,同时也可减缓GRC抗折强度下降的速度;粉煤灰取代率20%、硅灰取代率10%、废混凝土骨料取代率30%时,对GRC抗折强度的提高作用最大,对GRC抗折强度下降的延缓作用较废混凝土骨料单独使用或粉煤灰与硅灰同时使用时要大。  相似文献   

11.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

12.
Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study.  相似文献   

13.
Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.  相似文献   

14.
This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength.A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions.Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties.Compressive strength is clearly affected by the quality of recycled aggregates. If the water–cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength.The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.  相似文献   

15.
In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW–25% EVA and 50% CDW–50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties.  相似文献   

16.
Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 32 factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5–10 wt.%), 7-day compressive strength (26–36 MPa) and 28-day compressive strength (32–44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content.  相似文献   

17.
The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.  相似文献   

18.
An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.  相似文献   

19.
This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号