首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Villanueva 《Marine Biology》2000,137(1):161-168
 Apart from one study that reported growth of less than one increment per day in statoliths of the squid Alloteuthis subulata, most studies so far have presumed that one increment was laid down per day in the statoliths of the squid species they examined. The present study provides evidence of differential daily growth rates in embryonic statoliths of the squid Loligo vulgaris Lamarck, 1798, thus confirming a previous report for A. subulata. Incremental growth rates of L. vulgaris statoliths differ as a function of temperature. Squid embryos were incubated in the laboratory at three temperatures (12.0, 15.5 and 21.1 °C), and tetracycline staining was used to follow statolith growth. This growth slowed in squid exposed to the lowest temperature, but recovered when the squid were returned to warm conditions, indicating statolith adaptation. Statolith growth rate after incubation at 12 °C was 1.3% d−1 and reached 6.1% d−1 for squids exposed to 21.1 °C. Statoliths from embryos incubated at 15.5 °C yielded a rate of 1 increment d−1 and a mean daily growth of 2.2 μm in the dorsal dome area of the statolith. In contrast, the slow growth of statoliths incubated at 12 °C yielded a mean daily growth of only 0.9 μm in the dorsal dome and the readings resulted in a less-than-daily increment-deposition rate. Received: 9 October 1999 / Accepted: 30 March 2000  相似文献   

2.
 A laboratory study investigating the influence of temperature on the microstructure of statoliths of Lolliguncula brevis is described. Groups of squid were subjected to various temperature regimes for periods in excess of 30 d. Statoliths extracted from 20 squid were examined using a confocal microscope in laser scanning mode. The parts of the statoliths deposited during the course of the experiments were identified using either putative daily increment counts or from checks produced in response to capture and handling. These checks appear to consist of a series of prominent increments rather than reflecting a period of interrupted statolith growth. Increments deposited during the experiment generally displayed reduced contrast and clarity in comparison to the “wild” parts of the statolith, presumably in response to the constant conditions imposed in the laboratory. Average statolith growth rates observed over the course of the experiment showed a strong positive relationship to ambient temperature. A significant sex effect was apparent, with statoliths of female squid generally growing faster than those of males. Observed statolith growth rates at 15 °C were generally below 1 μm d−1, suggesting that the widths of daily increments produced under these conditions may approach the resolution limits of a light microscope. The implications for studies using increment numbers to estimate age are discussed. Received: 23 July 1999 / Accepted: 17 February 2000  相似文献   

3.
Juvenile squids were grown in individual 2.6-l floating enclosures and were fed either a high- or a low-ration diet of fish and the crustacean Acetes. Squids were maintained for a maximum of 44 days in two experiments. The high-ration individuals reached a significantly larger size in both experiments (27, 25.5 mm mean mantle length, ML) compared to their low-ration siblings (19 mm mean ML) in both experiments. The statolith increment widths prior to the start of the experiment were significantly wider (between 3 and 4 μm) compared to the increment widths after the start of the experiment (between 2 and 3 μm) both for the low- and the high-ration squids. High-ration squids also had significantly wider increments and larger statoliths than their low-ration siblings. Even though we detected consistent trends in daily statolith increment widths for the different feeding regimes, we could not detect variation in increment widths at a daily level of resolution (i.e. as a result of differences in day-to-day food intake at an individual level). This was probably due to the relatively consistent diet experienced by each individual. These experiments revealed that ration level influences squid growth rate, statolith size and daily statolith increment width. Received: 30 March 2000 / Accepted: 30 October 2000  相似文献   

4.
Nine monthly samples of arrow squid Nototodarus gouldi were obtained off Portland, Australia, during 2001. Statolith age analysis was used to determine growth rates and cohort structure during the study period. The results of statolith increment periodicity experiments were inconclusive due to difficulties in discerning increments in the cultured squids, although the region of the statolith in the maintained squids did increase over time. The maximum age obtained was 360 days, which is consistent with a 1-year life cycle in this species. Squid obtained were >150 days old and usually >200 mm mantle length. While there was often a mix of maturity stages for females, the majority of males were mature. Monthly length frequency distributions suggested that there was a complex mixture of cohorts in the samples obtained. Fitting a Normal mixture model to the age frequency distribution suggested that at least four cohorts were present during the period of the study. Growth was modelled with an exponential function with individuals grouped according to hatch season. The rate of growth for seasonal groups of squid was considerably different between males and females. There was no evidence of seasonal differences in growth rates of males. In contrast, the summer hatched females had significantly greater growth rates than winter and spring at P=0.05, and the growth rates of autumn hatched females were found to be significantly different to the winter hatched females at the 0.1 level.Communicated by M.S. Johnson, Crawley  相似文献   

5.
Cephalopod mollusks exhibit highly plastic life cycle traits influenced primarily by the interactive effects of food availability, light cycle and temperature, with the latter perhaps the most influential. Hatchlings of the tropical reef squid Sepioteuthis lessoniana were hatched from field-collected eggs in the laboratory and cultured at different temperatures to evaluate the effect of temperature on growth rates. All groups showed rapid, sustained growth rates from hatching to a size of 10–25 g. Beyond this size range, growth was slower and not clearly exponential in form. Growth rate was closely linked to temperature. Squids grown at approximately 27 °C attained a size of 10 g in as little as 45 days at sustained growth rates of 12.2% body weight day−1 (%bw day−1), while squids cultured at 20 °C required almost 100 days to attain the same size at rates of 5.7%bw day−1. At an age of 55 days and approximately 1 g body weight, juvenile squids cultured at 20 °C were able to accelerate growth rates from 5.7%bw day−1 to over 12%bw day−1 when temperature was raised to 27 °C. They maintained this growth rate to a size of about 10 g and an age of at least 75 days post-hatching, indicating that body size and not age is the limiting factor for this rapid post-hatching growth. By comparison, conspecifics cultured near 27 °C from hatching had shifted out of the rapid post-hatching growth phase by day 50 at sizes between 10 and 50 g. The hatchlings from temperate to subtropical Japan had consistently higher growth rates at comparable temperatures than hatchlings from tropical Okinawa. When plotted as growth rate versus temperature, the Japanese group had a clearly higher slope to the relationship than the tropical populations, equivalent to a 2%bw day−1 difference in growth rate at 25 °C. Age at first egg-laying was decreased at higher culture temperatures; however, overall life span was not. Received: 21 February 2000 / Accepted: 6 September 2000  相似文献   

6.
Statolith microstructure was studied in 56 Ancistrocheirus lesueurii (25 to 423 mm of mantle length, ML) caught in the central-east Atlantic. Statolith growth increments were grouped into three main growth zones, distinguished mainly by increment width. The second transition in the statolith microstructure (from Zone 2 to Zone 3) coincides with the life history shift from epipelagic and upper mesopelagic to a bathyal habitat. Second-order bands (mean 27.65 growth increments) and sub-bands (mean 13.6 growth increments) within statolith microstructure appeared to be related to the lunar cycle. Striking sexual dimorphism is reflected in the age and growth rates: males live ca. 1 yr, while females only start maturing at this age and obviously live >1.5 yr. A. lesueurii is a slow growing squid, attaining 25 to 30 mm ML at the age of 100 d. After ontogenetic migrations into bathypelagic waters at ML > 30 to 35 mm, growth rates gradually decrease to the minimum known values for squids. Based on back-calculated hatching dates, A. lesueurii hatches throughout the year with a peak between November and March. Received: 28 August 1996 / Accepted: 31 January 1997  相似文献   

7.
Strontium to calcium ratios were observed along longitudinal sections of statoliths of nine neon flying squid, Ommastrephes bartrami (LeSueur, 1821), including three mature females (422 to 454 mm mantle length, ML; 207 to 306 d old) obtained from the North Pacific (27–35°N; 144–150°E) during winter and six immature males and females (187 to 226 mm ML; 126 to 164 d old) collected from 39°N; 145°E and 39°N; 169°W during summer. The distances between the nucleus (core) and the edge of the dorsal dome were approximately 660 to 690 μm in mature females and 450 to 510 μm in the immature squid. Sr/Ca ratios were determined at intervals of 30 μm between the nucleus and edge of the dorsal dome. Sr/Ca ratios were higher in areas near the nuclei and peripheral portions of the dorsal dome than in the middle portions of the statoliths (270 to 420 μm from the nuclei, corresponding to ages of 60 to 90 d) in mature females; thus a U-shaped pattern was evident. Sr/Ca ratios in the six immature squid decreased from nucleus to the dorsal dome; in three squid the ratios slightly increased toward the dorsal dome edge. The observed Sr/Ca ratios in immature squid were considered to represent younger portions of the U-shaped pattern. In the present study we discuss this pattern in relation to environmental and biological conditions of O. bartrami, which undertakes seasonal migrations between spawning grounds in the Subtropical Domain and feeding grounds in the Subarctic Domain and Transitional Zone in the North Pacific Ocean. Although Sr/Ca ratios are potentially affected by ambient water temperature and ontogenetic conditions, including somatic growth and statolith growth, it was impossible to evaluate each environmental and biological effect separately, as variations in these factors are complicated and effects could be interdependent. Received: 11 April 1997 / Accepted: 27 December 1997  相似文献   

8.
 Copper toxicity was tested on a coastal population of the mysid Praunus flexuosus (Müller) from Southampton Water (Southern England) under winter and summer conditions. Ten-day toxicity tests were performed on the different life-cycle stages (female, male and juvenile) present in winter (December/February) and summer (August). The individuals were in winter or summer physiological condition and were exposed to seawater to which 0, 5, 25, 75 and 200 μg l−1 copper was added. There were significantly different copper toxicity effects in winter and summer. In winter mortality was ≤ 1% at all levels of copper exposure, while in summer identical exposure levels caused mortality of up to 93%. The 96 h LC50 was 30.8 μg l−1 copper added in the summer. In winter, the low mortality prevented calculation of LC50. There were differences in responses to copper between the life-cycle stages. Juveniles were more sensitive than adults, and were severely affected within 24 h. Females were more affected than males at lower doses and shorter exposure times. Received: 28 April 1999 / Accepted: 22 June 2000  相似文献   

9.
D. Liang  S. Uye 《Marine Biology》1997,128(3):409-414
In situ egg production of the egg-carrying calanoid copepod Pseudodiaptomus marinus was investigated in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan, at 3- to 5-d intervals for a year. This species reproduced throughout the year, and the adults showed a large abundance peak in June/July and a small peak in September/October. Females usually outnumbered males, comprising 61.4% of the annual mean. The composition of ovigerous females varied from 7.9 to 100%, with an annual mean of 55.7%. Adult prosome length was consistently large throughout winter and spring, and decreased with increasing temperature in summer and fall. Egg diameter varied from 98 to 121 μm, and was negatively correlated to temperature. The seasonal variation in clutch size (range: 15.1 to 38.2 eggs) was bicyclical, with peaks in May and December. The egg production rate of breeding females was low in January to March (mean: 2.3 eggs female−1 d−1), while it was constantly high from mid-May to early October (mean: 12.1 eggs female−1 d−1). The specific egg production rate for the breeding females was highly correlated to temperature; it increased linearly from 0.03 d−1 at 9 °C to 0.27 d−1 at 26 °C. Compared to other co-occurring copepods, the reproductive rate of P. marinus was lowest, which is one of the reasons why this species never dominates in this inlet. Received: 11 November 1996 / Accepted: 7 December 1996  相似文献   

10.
The growth rates of two fish species, the winter flounder Pseudopleuronectes americanus (Walbaum) (19.3 to 42.6 mm total length, TL) and the tautog Tautogaonitis (Linnaeus) (23.9 to 55.9 mm TL), were used to evaluate habitat quality under and around municipal piers in the Hudson River estuary, USA. Growth rates were measured in a series of 10 d field caging-experiments conducted at two large piers in the summers of 1996 and 1997. Cages (0.64 m2) were deployed along␣transects that stretched from underneath the piers to beyond them, encompassing the pier edge (the transitional zone between the pier interior and the outside). Growth in weight (G w ) was determined at five locations along the transect, 40 m beneath the pier, 20 m beneath the pier, at the pier edge, 20 m beyond the pier edge, and 40 m beyond. Under piers, mean growth rates of winter flounder and tautogs were negative (xˉG W  = −0.02 d−1), and rates were comparable to laboratory-starved control fishes (xˉG W  = −0.02 d−1). In contrast, mean growth rates at pier edges and in open waters beyond piers were generally positive (xˉG W ranged from −0.001 to +0.05 d−1), with growth at pier edges often being more variable and less rapid than at open-water sites. Analyses of stomach contents upon retrieval of caged fishes revealed that dry weights of food were generally higher among fishes caged at open-water stations ( range = 0.02 to 0.72 mg dry wt) than at pier-edge ( range = 0.01 to 0.54 mg) or under-pier ( range = 0.03 to 0.11 mg) stations, although it was apparent that benthic prey were available at all stations on the transect. Our results indicate poor feeding conditions among fishes caged under piers, and suboptimal foraging among fishes caged at pier edges. Inadequate growth rates can lead to higher rates of mortality, and, based on these and other earlier experiments, we conclude that under-pier environments are poor-quality habitats for some species of juvenile fishes. Received: 12 March 1998 / Accepted: 9 November 1998  相似文献   

11.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

12.
Eggs and larvae of the Senegal sole, Solea senegalensis Kaup, were reared from fertilization until the end of metamorphosis, which occurs by Day 17 after hatching at 19.5 °C. Changes in energy content and biomass quality were studied in terms of dry weight and of carbon, nitrogen and energy content. S. senegalensis spawned eggs of about 1 mm diameter which hatched 38 h after fertilization. Average dry weight of individual eggs was 46 μg, the chorion accounting for about 18% of total dry weight. Gross energy of recently fertilized sole eggs was approximately 1 J egg−1. From fertilization to hatching, eggs lost 8% of their total energy (chorion not included). After hatching, larvae lost 14% of their initial energy until the start of feeding which occurred about 48 h afterwards. The principal components catabolized during embryogenesis were carbon-rich compounds that decreased by 26%, while nitrogen-rich compounds decreased by only 10% and were practically unaltered from hatching to the start of feeding. Feeding larvae displayed constant growth during the period studied (specific growth rate on a dry weight basis was 0.26 d−1). The relative proportion of carbon and nitrogen content revealed an accumulation of high energy compounds in the days before metamorphosis. By Day 14, the energy content reached values similar to those of recently hatched embryos, but decreased again during metamorphosis. Received: 10 June 1998 / Accepted: 28 January 1999  相似文献   

13.
E. Mutlu  F. Bingel 《Marine Biology》1999,135(4):589-601
The distribution of Pleurobrachia pileus Müller, 1776 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum of 200 m) in the winter, spring, and summer of 1991 to 1995. The summer samples were collected in 1991 to 1993 (for a previous) and are included in this paper for comparative purposes. High concentrations of P. pileus were found at the northern edges of anticyclonic eddies along the southern coastal regions. The biomass and abundance of P. pileus increased from winter through spring to a peak in summer. The highest mean wet weight during a sampling period was 250 g m−2, while the maximum wet weight was 1429 g m−2. P. pileus was mostly found in a layer extending from the lower parts of the thermocline down to the anoxic zone, where the temperature was <8 °C. The vertical distribution of P. pileus biomass had two clear maxima at night: an upper maximum at 20 to 40 m was less pronounced than the lower maximum at 90 to 120 m depth. Mean body length of P. pileus did not exceed 12 mm. Smaller individuals (9 to 10 mm length) occurred in winter. P. pileus had two length classes in early spring (March 1995) and late summer (August 1993), indicating the presence of both newly hatched and larger individuals. Overall, the stomach contents of P. pileus consisted mainly of Copepoda (90%), Cladocera (1%), Mollusca (1%), fish eggs and larvae (1%), and other taxa (7%). The preferred food of P. pileus (frequency of occurrence) was: Calanus euxinus (39%), Pseudocalanus elongatus (30%), Acartia clausi (28%), Oithona similis (2%), and Paracalanus parvus (1%). The endoparasite Hysterothylacium aduncum was commonly found in P. pileus. Abundances of Mnemiopsis leidyi and P. pileus were either negatively correlated (r = −0.5 to −0.7) or positively correlated at a low significance level (r = 0.25 to 0.3) with abundance of A. clausi in different months of the year. Aurelia aurita abundance was correlated mainly with the abundance of C. euxinus from June 1991 to March/April 1995. Over the same period the abundance of P. pileus was significantly correlated with the abundance of P. elongatus, an important prey species. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

14.
In Red Wharf Bay, UK the naticid gastropod, Polinices pulchellus, was more abundant and more highly aggregated during the summer months (June–August 2001) than during the winter (December 2000). Whilst small numbers of juvenile P. pulchellus (4–6 mm shell length) were present throughout the year the population consisted mainly of individuals of 12–14 mm shell length. Juvenile snails grew rapidly in size during the winter and early spring; growth then virtually ceased between May and June, following which there was a further period of rapid growth between August and February. Densities ranged between 57 and 4,073 ha−1 and the largest individual collected during this investigation measured 16.2 mm in shell length. Statoliths from adult P. pulchellus revealed the presence of a settlement ring and two prominent growth rings (rings 1 and 2). A curvilinear relationship exists between statolith diameter and shell length in snails up to 16 mm in length. Settlement rings ranged in diameter from 19.7 to 45.2 μm (mean 29.8 μm; SE=0.41) giving an estimated shell length of the settled juvenile of 1.1 mm. The diameter of ring 1 and ring 2 were significantly correlated indicating that rapid growth during the first year is maintained during year 2. Shell lengths estimated from the diameters of the prominent statolith rings and those obtained from length frequency data analysis (LFDA), were broadly congruent strongly suggesting an annual periodicity to the statolith rings. The largest snails (>15 mm) present within this population were estimated to be between 2 and 3 years old. Von Bertallanfy seasonal growth curves obtained from the LFDA predicted values of L∞, K and t 0 of 14.32 mm, 1.54 and −0.14 years, respectively, suggesting that P. pulchellus rapidly attains its maximum asymptotic size.  相似文献   

15.
The spatial and temporal distributions of two island-associated copepod species, Undinula vulgaris Dana and Labidocera madurae Scott, were compared to the distributions of two open ocean species, Cosmocalanus darwinii Lubbock and Scolecithrix danae Lubbock, along 28-km windward and leeward transects off the island of Oahu, Hawaii. Samples were taken in September and December 1985 and April and June 1986. A warm, low salinity pool on the leeward side was a prominent feature during all transects except December. The abundances of the two oceanic species did not change significantly between leeward and windward stations, with distance from shore, or between September 1985 and April 1986 samples. As expected, very high abundances of U. vulgaris occurred at some nearshore stations, up to 3 g dry wt m−2 for adults alone. Calculations of respiratory loss at these densities (0.7 g C m−2 d−1) suggest a high local productivity would be required to meet these demands. L. madurae, a surface-dwelling species normally restricted to within 1 km of shore, was an effective indicator species of nearshore water movement. It was more common in offshore samples on the leeward transects, rarely being found offshore on the windward side, consistent with prevailing currents and the presence of the leeward warm, low salinity pool. The occurrence of a strong mixing event in April 1986 resulted in L. madurae being distributed throughout the upper 100 m of the water column. The presence of oceanic species close to shore on the windward side also coincided with this wind-driven event. The primary environmental influence on vertical distributions was daytime cloud cover, with U. vulgaris tending to be found shallower on cloudy days. Of the two oceanic species, S. danae exhibited the most pronounced vertical migration, however, vertical distributions were not significantly correlated with environmental factors for either species. The abundant nearshore U. vulgaris population cannot be explained by differences in vertical distribution between it and the two oceanic species that might allow a physical mechanism to concentrate U. vulgaris. A high population growth rate is likely necessary to explain U. vulgaris' dominance. Received: 26 June 1998 / Accepted: 31 March 1999  相似文献   

16.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

17.
E. Mutlu 《Marine Biology》1999,135(4):603-613
The distribution of Mnemiopsis leidyi Agassiz, 1865 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter, and spring from 1991 to 1995. Distribution was patchy. Average biomasses of 15 to 500 g m−2 were measured, and abundances varied from 10 to 180 ind m−2. Biomass and abundance peaked in winter, and there was a secondary peak in the summer. The distribution of M. leidyi was correlated with hydrographic features in the Black Sea with higher concentrations in anticyclonic gyres. The centers of the two main cyclonic gyres generally had a low biomass of M. leidyi. From July 1992 to March 1995, the populations were largely offshore. M. leidyi were confined to the upper part of the mixed layer both day and night. Some individuals displayed a negative taxis to daylight and were concentrated below the thermocline at night. Smaller M. leidyi (1.5 to 2 cm) were present in the winter, and individuals reached maximum size in the summer. Although reproduction was continuous throughout the year, there were two distinct peaks: the larger peak in the summer and the smaller peak in the winter. Microscopic analysis of stomach contents showed that copepods and molluscs form their main diet. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

18.
M. Thiel 《Marine Biology》1998,132(2):209-221
The suspension-feeding amphipod Dyopedos monacanthus (Metzger, 1875) is a common epibenthic amphipod that lives on self-constructed “mud whips” (built from filamentous algae, detritus and sediment particles) in estuaries of the northern North Atlantic Ocean. The population biology of D. monacanthus at a shallow subtidal site in the Damariscotta River Estuary (Maine, USA) was examined between July 1995 and July 1997. The resident population at the study site was dominated by adult females during most months of the year. High percentages of subadults were found in late summer/early fall. Often, between 10 and 20% of the adult females were paired with males, and the percentage of ovigerous females varied between 40 and 100%, indicating continuous reproduction. The percentage of parental females varied between 40 and 80% during most months, but dropped to levels below 20% during summer/early fall. The average size of amphipods on their own mud whips was ∼4 mm during the summer/early fall, after which it increased continuously to >7.0 mm in March or April, and then dropped again. In March and April, the average number of eggs and juveniles female−1 was ∼100 eggs and 55 juveniles, while during the summer/early fall the average number of eggs female−1 was <20 and that of juveniles female−1 was <10. Many juveniles grew to large sizes (>1.4 mm) on their mothers' whips in winter/early spring but not in the summer/fall. The average number of amphipods at the study site was low in late summer/early fall (<50 individuals m−2), increased steadily during the winter, and reached peak densities of >3000 individuals m−2 in April 1996 (>1600 individuals m−2 in May 1997), after which densities decreased again. The decrease of the D.␣monacanthus population at the study site coincided with a strong increase of amphipods found pelagic in the water column. This behavioural shift occurred when temperatures increased and benthic predators became more abundant and active on shallow soft-bottoms, suggesting that D. monacanthus at the study site is strongly affected by predation. The effects are direct (by predation on amphipods) and indirect (by reducing duration of extended parental care and enhancing pelagic movements). Both extended parental care and pelagic movements are important behavioural traits of D.␣monacanthus (and other marine amphipods), and significantly affect its population dynamics. Received: 18 January 1998 / Accepted: 27 May 1998  相似文献   

19.
The extent to which the American lobster, Homarus americanus (H. Milne-Edwards), utilizes estuarine habitats is poorly understood. From 1989 to 1991 we examined lobster movements in and around the Great Bay estuary, New Hampshire using tag/recapture and ultrasonic telemetry. A total of 1212 lobsters were tagged and recaptured at sites ranging from the middle of Great Bay, 23.0 km from the coast, to Isles of Shoals, 11.2 km offshore. Twenty-six lobsters equipped with ultrasonic transmitters were tracked for periods ranging from 2 weeks to >1 year. Most lobsters moved <5 km toward the coast, with those furthest inland moving the greatest distance. Lobsters with transmitters moved in a sporadic fashion, with residency in one area for 2 to 4 weeks alternating with rapid movement to a new location (mean velocity = 0.3 km d−1, 1.8 km d−1 max.). Site of release influenced distance moved, but there was no significant relationship between lobster size and distance traveled, days at large, or rate of movement. Most movement into the estuary occurred in the spring, while during the remainder of the year there was a strong tendency to move downriver, toward the coast. These seasonal migrations of estuarine lobsters may enhance their growth and survival by enabling them to avoid low salinity events in the spring and fall, and to accelerate their growth in warmer estuarine waters during the summer. Received: 26 January 1996 / Accepted: 22 January 1999  相似文献   

20.
Grazing of phytoplankton by copepods in eastern Antarctic coastal waters   总被引:1,自引:0,他引:1  
Chlorophyll a, primary productivity and grazing by copepods on phytoplankton were measured in the upper water column during the summer of 1994/1995 at a coastal site near Davis Station, East Antarctica. Chlorophyll a was at a maximum in mid-December, then dropped markedly as the coastal fast ice melted and broke‐out. Phytoplankton biomass increased again from mid‐ to late‐February. Copepods accounted for at least 65% of zooplankton biomass in the water column before sea ice break‐out, whereas larval polychaetes and ctenophores dominated after ice break‐out. Oncaeacurvata was the numerically dominant species throughout the study. The highest grazing rate (8.7 mg C␣m−3␣d−1) was recorded on 21 December when O.␣curvata accounted for 64% of the total. Grazing had decreased markedly by 28 December (0.9 mg C m−3 d−1); again O. curvata accounted for over 50% of the total ingested. Copepod grazing increased after ice break-out until the last experiment on 20 February (⋍5 mg C␣m−3␣d−1). The main species responsible for grazing during this period were O. curvata, Oithonasimilis, Calanoidesacutus and unidentified copepod nauplii. It was estimated that copepods removed between 1 and 5% of primary productivity. Received: 11 October 1996 / Accepted: 22 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号