首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
Deployment of litterfall traps revealed that clearcut logging of boreal riparian forests in northwestern Ontario, Canada resulted in a dramatic shift from once dominant conifers to regrowth composed largely of deciduous trees and reduced the allochthonous inputs of small woody debris to lake littoral zones by over 90%. Due to the rarity of macrophytes in these oligotrophic lakes, littoral macroinvertebrates were found to actively colonize woody debris placed within mesh litter bags. The recalcitrant nature of small woody debris in these lakes (average median persistence time of about 5 years estimated from mass loss data) indicates, however, that this important habitat resource will probably never completely disappear in relation to its projected rate of resupply during post-disturbance forest regeneration. Colonization rates of twigs and bark contained within the litter bags were not found to differ between coniferous and deciduous species. This indicates that macroinvertebrates in these boreal lakes are merely opportunistic colonizers of woody debris, probably for its use as either a biofilm substrate or a predation refuge. As a result, shifts in tree species composition following riparian clearcutting should not detrimentally affect the taxa richness or organism abundance of aquatic macroinvertebrates in these lakes.  相似文献   

2.
A disturbance, such as species invasion, can alter the exchange of materials and organisms between ecosystems, with potential consequences for the function of both ecosystems. Russian olive (Elaeagnus angustifolia) is an exotic tree invading riparian corridors in the western United States, and may alter stream organic matter budgets by increasing allochthonous litter and by reducing light via shading, in turn decreasing in-stream primary production. We used a before-after invasion comparison spanning 35 years to show that Russian olive invasion increased allochthonous litter nearly 25-fold to an invaded vs. a control reach of a stream, and we found that this litter decayed more slowly than native willow. Despite a mean 50% increase in canopy cover by Russian olive and associated shading, there were no significant changes in gross primary production. Benthic organic matter storage increased fourfold after Russian olive invasion compared to pre-invasion conditions, but there were no associated changes in stream ecosystem respiration or organic matter export. Thus, estimated stream ecosystem efficiency (ratio of ecosystem respiration to organic matter input) decreased 14%. These findings show that invasions of nonnative plant species in terrestrial habitats can alter resource fluxes to streams with consequences for whole-ecosystem functions.  相似文献   

3.
Conservation of the African Great Lakes: A Limnological Perspective   总被引:7,自引:0,他引:7  
The limnology of Lakes Malawi Tanganyika, and Victoria is discussed with the objective of examining how the physical, chemical, and biological properties of the lakes will determine the response of these ancient great lake ecosystems to human activities. Of the physical properties discussed, large dilution capacities and long flushing times can make the detection and removal of chemical pollutants in these lakes difficult. The outflows of all three lakes are small because of high evaporation losses, and as a result lake levels are responsive to climate changes that would alter evaporation:precipitation ratios. Increased nutrient input to these lakes will likely result in a decrease in the volume of oxygenated water and available fish habitat. Plankton community composition will also change, probably toward dominance by cyanobacteria. While the effects of eutrophication on fish production are difficult to predict, changes in plankton composition would almost certainly be accompanied by changes in fish community structure. Recent studies of water chemistry and plankton productivity in Lake Victoria provide evidence of possible eutrophication. Because land use has a diffuse but potentially large impact on these lakes, conservation strategies must take into account human activities within entire drainage basins. This requires cooperation between riparian countries and technological and financial input from the international community. An immediate need is the establishment of monitoring programs to determine the impact, real or potential, of human activities around the lakes.  相似文献   

4.
Anthropogenic land‐cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity‐rich forests are being converted to oil‐palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well‐being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil‐palm monoculture by sampling stream fish communities in an oil‐palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil‐palm plantation streams that lacked riparian reserves. Thus, a land‐sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil‐palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil‐palm plantations standard practice, and we encourage palm‐oil purchasers to source only palm oil from plantations that employ this practice.  相似文献   

5.
Zeug SC  Winemiller KO 《Ecology》2008,89(6):1733-1743
Algal carbon has been increasingly recognized as the primary carbon source supporting large-river food webs; however, many of the studies that support this contention have focused on lotic main channels during low-flow periods. The flow variability and habitat-heterogeneity characteristic of these systems has the potential to significantly influence food web structure and must be integrated into models of large-river webs. We used stable-isotope analysis and IsoSource software to model terrestrial and algal sources of organic carbon supporting consumer taxa in the main channel and oxbow lakes of the Brazos River, Texas, USA, during a period of frequent hydrologic connectivity between these habitat types. Standardized sampling was conducted monthly to collect production sources and consumer species used in isotopic analysis. Predictability of hydrologic connections between habitat types was based on the previous 30 years of flow data. IsoSource mixing models identified terrestrial C3 macrophytes (riparian origin) as the primary carbon source supporting virtually all consumers in the main channel and most consumers in oxbow lakes. Small-bodied consumers (<100 mm) in oxbow lakes assimilated large fractions of algal carbon whereas this pattern was not apparent in the main channel. Estimates of detritivore trophic positions based on delta15N values indicated that terrestrial material was likely assimilated via invertebrates rather than directly from detritus. High flows in the river channel influenced algal standing stock, and differences in the importance of terrestrial and algal production sources among consumers in channel vs. oxbow habitats were associated with patterns of flooding. The importance of terrestrial material contradicts the findings of recent studies of large-river food webs that have emphasized the importance of algal carbon and indicates that there can be significant spatial, temporal, and taxonomic variation in carbon sources supporting consumers in large rivers.  相似文献   

6.
基于Meta分析的土壤呼吸对凋落物输入的响应   总被引:1,自引:0,他引:1  
凋落物输入是影响土壤呼吸的一个重要因素,然而从国内外目前研究结果来看,土壤呼吸响应凋落物输入的影响因素尚不清楚。利用国内外已发表的30篇研究论文共1393对有效数据,通过Meta分析,从凋落物管理措施、气候、植被、地形、土壤理化性质等因素揭示凋落物输入对土壤呼吸的影响程度。研究发现:与清除凋落物处理相比较而言,(1)凋落物输入后显著增加了土壤呼吸,且土壤呼吸的增加程度呈现出倍增凋落物处理是自然凋落物处理的1.33倍;(2)不同气候条件下的土壤呼吸增加程度呈现出强降雨(>1000 mm)是微弱降雨(<1000 mm)的1.34倍,以及高温气候(>20℃)是低温气候(<20℃)的1.7倍;(3)土壤呼吸的增加程度在不同植被带下呈现出针叶林带(34.1%)>阔叶林带(28%)>混交林带(22%)>草地(17.3%)的趋势;(4)不同海拔梯度条件下土壤呼吸的增加程度呈现出高海拔(59.6%)>中海拔(34.2%)>低海拔(26.7%)的趋势;(5)不同土壤理化性质条件下的土壤呼吸增量呈现出低容重(77.5%)分别是中容重(26.9%)和高容重(18.0%)的2.9倍和4.3倍,同时中性土壤(79.6%)的呼吸增量远远大于酸性(28.2%)和碱性(24.1%)土壤的呼吸增量,以及高土壤碳氮比(81.2%)的土壤呼吸增量远远大于低土壤碳氮比(19.4%)和中土壤碳氮比(29.6%)的土壤呼吸增量。由此可见,凋落物输入后会导致土壤呼吸的显著增加,但是不同气候、不同植被、不同地形、不同土壤理化性质等条件下其土壤呼吸增加的幅度不同。  相似文献   

7.
LeRoy CJ  Whitham TG  Keim P  Marks JC 《Ecology》2006,87(1):255-261
Although it is understood that the composition of riparian trees can affect stream function through leaf litter fall, the potential effects of genetic variation within species are less understood. Using a naturally hybridizing cottonwood system, we examined the hypothesis that genetic differences among two parental species (Populus fremontii and P. angustifolia) and two groups of their hybrids (F1 and backcrosses to P. angustifolia) would affect litter decomposition rates and the composition of the aquatic invertebrate community that colonizes leaves. Three major findings emerged: (1) parental and hybrid types differ in litter quality, (2) decomposition differs between two groups, a fast group (P. fremontii and F1 hybrid), and a slow group (P. angustifolia and backcross hybrids), and (3) aquatic invertebrate communities colonizing P. fremontii litter differed significantly in composition from all other cross types, even though P. fremontii and the F1 hybrid decomposed at similar rates. These findings are in agreement with terrestrial arthropod studies in the same cottonwood system. However, the effects are less pronounced aquatically than those observed in the adjacent terrestrial community, which supports a genetic diffusion hypothesis. Importantly, these findings argue that genetic interactions link terrestrial and aquatic communities and may have significant evolutionary and conservation implications.  相似文献   

8.
滨海红树林的生产力极高,在全球碳循环中占有重要地位,但是其碳循环的系统测定却鲜见报道。以深圳福田秋茄林为研究对象,2011年4月-2012年4月对内滩天然林、中滩和外滩人工林的植被、凋落物、粗木质残体、土壤的碳密度和净增量,以及植被和土壤呼吸进行了实际观测,并探讨了土壤有机碳来源,初步构建了秋茄林沿不同滩位的生态系统碳循环模式。结果表明,深圳福田秋茄林的碳密度在234.58~694.46 t.hm^-2之间,其中植被碳密度为44.54~239.51 t.hm^-2,凋落物和粗木质残体碳密度为2.02~24.56 t.hm^-2,土壤碳密度(深度为50 cm)为188.02~430.39 t.hm^-2,生态系统碳密度整体上表现为自内滩向外滩降低的趋势。在研究时段内,3个滩位的植被碳密度净增量为4.31~13.28 t.hm^-2.a^-1,凋落物和土壤碳密度没有显著变化。红树林的凋落物生成量为2.17~10.55 t.hm^-2.a^-1,约有49.94~94.01%通过食草动物、冲入海洋和腐烂分解等途径消耗。植被呼吸量为2.20~12.08 t.hm^-2.a^-1,土壤微生物的异氧呼吸量为0.25~1.61 t.hm^-2.a^-1,甲烷排放为0.09~0.31 t.hm^-2.a^-1,土壤有机碳输入约18.99%~44.43%来自植被内源输入,其余来源于海洋碳输入。生态系统的总初级生产力介于8.68~35.91t.hm^-2.a^-1之间,约有47.38%~74.08%转变为净初级生产力(6.48~23.84 t.hm^-2.a^-1)。碳平衡分析表明,在研究时段内,内滩的天然林是个很大的碳汇,约20.08 t.hm^-2.a^-1,中滩和外滩的人工林碳汇量分别为9.98 t.hm^-2.a^-1和4.03 t.hm^-2.a^-1。相对于陆地森林,秋茄红树林有着显著的碳汇效益,在全球碳循环中起着不可忽视的作用。  相似文献   

9.
Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use.  相似文献   

10.
11.
The importance of allochthonous carbon to the productivity of stream ecosystems in temperate ecozones is well understood, but this relationship is less established in oligotrophic lakes. The nearshore littoral zones, at the interface of terrestrial and aquatic systems, are areas where the influence of terrestrial subsidies is likely greatest. We investigated the response of nearshore communities to variation in the quantity and composition of allochthonous materials, determined the landscape characteristics that regulate the variation of this subsidy, and explored the potential for terrestrial restoration practices to influence the export of organic matter to lakes. Stepwise multiple regressions revealed that diversity of nearshore macroinvertebrate families increased with the amount of fine particulate organic matter (FPOM) captured in sediment traps. The quantity of FPOM (g) increased with forest cover, and the relative amount of FPOM (percentage of total particulate material) in the traps increased with surface area of wetland in the catchments. These models suggest that terrestrially derived subsidies are important in smelter-impacted watersheds, and that the restoration of forests and wetlands will speed the return of nearshore consumer community diversity in industrially damaged lakes.  相似文献   

12.
Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (<20%) and soon after impact (<10 years). Sensitive species were functionally unique and associated with complex habitats and structures of allochthonous origin found in forested watersheds. Positive threshold responses of species were less common and generally occurred at >70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization.  相似文献   

13.
Cross-boundary flows of energy and nutrients link biodiversity and functioning in adjacent ecosystems. The composition of forest tree species can affect the structure and functioning of stream ecosystems due to physical and chemical attributes, as well as changes in terrestrial resource subsidies. We examined how variation in riparian canopy composition (coniferous, deciduous, mixed) affects adjacent trophic levels (invertebrate and microbial consumers) and decomposition of organic matter in small, coastal rainforest streams in southwestern British Columbia. Breakdown rates of higher-quality red alder (Alnus rubra) litter were faster in streams with a greater percentage of deciduous than coniferous riparian canopy, whereas breakdown rates of lower-quality western hemlock (Tsuga heterophylla) litter were independent of riparian forest composition. When invertebrates were excluded using fine mesh, breakdown rates of both litter species were an order of magnitude less and were not significantly affected by riparian forest composition. Stream invertebrate and microbial communities were similar among riparian forest composition, with most variation attributed to leaf litter species. Invertebrate taxa richness and shredder biomass were higher in A. rubra litter; however, taxa evenness was greatest for T. heterophylla litter and both litter species in coniferous streams. Microbial community diversity (determined from terminal restriction fragment length polymorphisms) was unaffected by riparian forest or litter species. Fungal allele richness was higher than bacterial allele richness, and microbial communities associated with lower-quality T. heterophylla litter had higher diversity (allele uniqueness and richness) than those associated with higher-quality A. rubra litter. Percent variation in breakdown rates was mostly attributed to riparian forest composition in the presence of invertebrates and microbes; however, stream consumer biodiversity at adjacent trophic levels did not explain these patterns. Riparian and stream ecosystems and their biotic communities are linked through exchange and decomposition of detrital resources, and we provide evidence that riparian forest composition affects stream ecosystem catabolism despite similarities in microbial and invertebrate communities.  相似文献   

14.
Finlay JC  Vredenburg VT 《Ecology》2007,88(9):2187-2198
Trophic linkages between terrestrial and aquatic ecosystems are increasingly recognized as important yet poorly known features of food webs. Here we describe research to understand the dynamics of lake food webs in relation to a native riparian amphibian and its interaction with introduced trout. The mountain yellow-legged frog Rana muscosa is endemic to alpine watersheds of the Sierra Nevada Mountains and the Transverse Ranges of California, but it has declined to a small fraction of its historical distribution and abundance. Although remaining frogs and introduced trout feed in different habitats of alpine lakes, our stable-isotope analyses clearly show that the same resource base of benthic invertebrates sustains their growth. During one period, insect emergence from naturally fishless lakes was nearly 20-fold higher compared to adjacent lakes with trout, showing that fish reduce availability of aquatic prey to amphibious and terrestrial consumers. Although trout cannot prey on adult frogs due to gape limitation, foraging post-metamorphic frogs are 10 times more abundant in the absence of trout, suggesting an important role for competition for prey by trout in highly unproductive alpine watersheds. Most Sierran lakes contain fish, and those that do not are usually small isolated ponds; in our study, these two lake types supported the lowest densities of post-metamorphic frogs, and these frogs were less reliant on local, benthic sources of productivity. Since Rana muscosa was formerly the most abundant vertebrate in the Sierra Nevada, the reduction in energy flow from lake benthos to this consumer due to fish introductions may have had negative consequences for its numerous terrestrial predators, many of which have also declined. We suggest that disruptions of trophic connections between aquatic and terrestrial food webs are an important but poorly understood consequence of fish introduction to many thousands of montane lakes and streams worldwide and may contribute to declines of native consumers in riparian habitats.  相似文献   

15.
The major sources and sinks of suspended particulate carbon are identified for northern Chesapeake Bay, Maryland, USA. The area of the bay under consideration was divided into two sections. The northernmost section (upper bay), from the head of the bay to the vicinity of Baltimore, was characterized by a high input of particulate carbon from upland drainage. The section from Baltimore to the mouth of the Potomac River (middle bay) was dominated by an internal supply of particulate carbon from primary production. The northernmost section was characterized by major particulate carbon losses to the bottom and to benthic respiration, with slightly less than half (43%) of the particulate carbon respired in the water column or converted to dissolved organic matter. In contrast, respiration in the water column or conversion to dissolved organic matter was responsible for the loss of about 65% of the particulate carbon in the middle section of the bay, while losses to the bottom and to benthic respiration totaled only 12%. Even though the supply of particulate carbon to the upper bay was about 1.5 times the supply to the middle bay, the loss of carbon due to biological activity (biological efficiency) in each area was similar, and amounted to about 70% of the supply of particulate carbon.The research reported here was partially supported by the University of Maryland and by the U. S. Bureau of Sport Fisheries and Wildlife under Contract No. 14-16-0005-2096. Contribution No. 471 of the Natural Resources Institute, University of Maryland, USA.  相似文献   

16.
McLeod RJ  Wing SR 《Ecology》2007,88(4):809-816
Forest litter is often considered to be a minor energy source to marine communities due to its refractory nature. Large volumes of forest litter are deposited in the New Zealand fjords, and likely recycled into available energy by microbial activity. In this study we used evidence from stable isotope analyses to test whether recycled carbon from chemoautotrophs was an important contributor to the diet of hagfish (Eptatretus cirrhatus). We then analyzed fatty acid biomarkers from the chemoautotrophic clam Solemya parkinsoni and E. cirrhatus to further discriminate the contribution of marine, terrestrial, and chemoautotrophic sources. Bulk isotopic signatures of E. cirrhatus varied considerably (delta13C, from -29.2 per thousand to -16.7 per thousand; delta15N, from -2.8 per thousand to +15.5 per thousand; delta34S, from -21.7 per thousand to +16.7 per thousand) and indicated that a significant percentage of organic matter (38-51%) originated from chemoautotrophs (delta13C, -31.3 per thousand +/- 0.1 per thousand [mean +/- SE]; delta15N, -5.7 per thousand +/- 0.2 per thousand; delta34S, -32.per thousand +/- 3.8 per thousand). Fatty acid biomarkers were depleted in 13C, particularly cis-vaccenic acid (18:1omega7: delta13C, -39.0 per thousand) indicating specific microbial origins of carbon. A high proportion of forest litter in sediments, coupled with isotopic and fatty acid biomarker results, indicates that terrestrial organic matter is a dominant contributor to this marine benthic system. This study demonstrates a clear linkage between terrestrial and marine ecological processes.  相似文献   

17.
Current theories may not fully explain why latitudinal patterns of plant diversity differ between terrestrial and flooded ecosystems. Moreover, the co-occurrence of hyper diverse stands in lowland tierra firma (not inundated) forests and almost monospecific stands in mangroves and gallery riparian vegetation within the tropics remains enigmatic. Building on evidence from ecology and agriculture, we present a new model investigating the hypothesis that, besides the general positive feedback of plant growth by nutrients release, litter decomposition builds up an intra-specific negative feedback functionally linked with tree diversity. The model results were compared with extensive published data sets both across and within latitudinal zones. The model predicts correctly the biomass production and decomposition process, as well as the number of tree species, their relative abundance in all environmental conditions providing a novel, putative explanation also for the diversity variations observed within the tropics. The model demonstrates a possible mechanistic link between the carbon cycle and biodiversity patterns, which is interesting in the debate about advancing in the direction of a unifying ecosystem theory.  相似文献   

18.
Microzooplankton was sampled during two cruises (Galápagos Vents, March 1985; Tongue of the Ocean and western edge of the Sargasso Sea, October/November 1985) by various collection methods (Niskin bottles, plankton nets, divers) to determine the vertical distribution and abundance of Acantharia. The larger size classes of Protozoa are dominated by the sarcodines, and Acantharia are frequently the most abundant of these in mesotrophic and oligotrophic oceans. The absolute densities of Acantharia have been consistently underestimated in many previous studies for two reasons: their skeletons dissolve in preserved samples, and they are undersampled by fine-meshed plankton nets. The previously identified dissolution problem may be less severe for concentrated samples because the dissolution of a portion of the Acantharia will raise the dissolved strontium concentration in the sample. Twenty five and 160 m-mesh plankton nets consistently underestimate the abundance of net plankton by one to two orders of magnitude. Possible reasons for this significant error are discussed. In the Equatorial Pacific Ocean, Acantharia were found at densities as high as 30 liter-1 and integrated abundances of 1.58 to 5.34x105 Acantharia m-2. Up to 90% were concentrated near the surface; their abundance declined sharply below 20 m. At two stations in the Atlantic, peak densities reached 6.4 liter-1. Wind-mixing may spread individuals more evenly through the euphotic zone, but they reestablish their surface maximum during period of calm. Acantharia generally have relatively few, but large symbionts. Small individuals average about 6 symbionts per host, larger hosts average 40 symbionts, and some individuals may have thousands of algal cells. Acantharia symbionts made up less than 1% of the chlorophyll in the water column, even at their host's peak abundances of 30 liter-1. However, production estimates, using published sarcodine-symbiont production-rates, suggest that Acantharia could occasionally account for up to 20% or more of the carbon fixation in the upper euphotic zone of oligotrophic oceans.  相似文献   

19.
用14 C标记葡萄糖法研究了外源镧对土壤微生物碳源利用的影响。结果表明 :外源镧在低浓度下可增强土壤微生物利用碳源进行呼吸作用 ,而高浓度下则产生显著抑制作用 ,最大抑制率为 3 3 %。土壤微生物呼吸产生的14 CO2 主要是培养初期释放的 ,培养 14d后14 CO2 释放已非常少。外源镧可增强土壤微生物利用碳源合成自身的生物量 ,最大增幅为 2 5 %。  相似文献   

20.
菌根真菌对土壤呼吸的影响   总被引:1,自引:0,他引:1  
土壤是陆地生态系统的重要组成部分,是地球最大的碳库之一。土壤呼吸是陆地生态系统向大气释放CO2的主要途径之一,其微小的变化将导致大气CO2浓度的较大波动。菌根是土壤真菌与植物根系形成的共生体,存在于绝大多数植物(90%)的根系和生境中。菌根共有7种类型,其中,在自然界中以丛枝菌根和外生菌根为主。众多研究表明,菌根对土壤呼吸有着至关重要的影响,是预测土壤CO2释放速率必须考虑,但却是难以估算的因素。文章总结了有关菌根(包括丛枝菌根和外生菌根)对土壤呼吸影响的研究进展,对目前所得到的研究结果进行了分析,表明菌根真菌侵染植物根系形成菌根后,能提高土壤呼吸的速率,其可能的途径有3条:(1)增强了根系的呼吸,(2)菌根真菌自身呼吸的组分,(3)根外菌丝促进了非根际区土体的呼吸。但是,菌根侵染对根系呼吸敏感性(Q10)影响的研究,大多数则表现为不显著。同时,菌根对土壤呼吸的影响受到各种因素的制约。通过对不同温度下菌根真菌呼吸速率的分析,表明菌根真菌对温度的升高具有适应性。从目前已发表的报道来看,目前关于菌根对土壤呼吸影响的研究还非常少,但可喜的是,近年来,越来越多的研究已经意识到了菌根在土壤呼吸中的重要作用。准确评估菌根在土壤呼吸中的贡献,将有助于预测未来在气候变化下,土壤cO2的排放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号