首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Feng MH  Shan XQ  Zhang SZ  Wen B 《Chemosphere》2005,59(7):939-949
There is no method recognized as a universal approach for evaluation of bioavailability of heavy metals in soil. Based on the simulation of the rhizosphere soil conditions and integration of the combined effects of root-soil interactions as a whole, a rhizosphere-based method has been proposed. Wet fresh rhizosphere soil was extracted by low-molecular-weight organic acids (LMWOAs) to fractionate metal fractions of soil pools, which were then correlated with the metal contents of wheat roots and shoots. The rhizosphere-based method was compared with other one-step extraction methods using DTPA, EDTA, CaCl2, and NaNO3 as extractants and the first step of the Community Bureau of Reference (BCR) method. Simple correlation and stepwise multiple regression analysis were used for the comparison. Simple correlation indicated that the extractable Cu, Zn, Cr, and Cd of soils by the rhizosphere-based method were significantly correlated with the metal contents of wheat roots. For DTPA, BCR1 and EDTA methods there was a relatively poor correlation between the extractable Cu, Zn and Cd of soil and metal contents of wheat roots. Stepwise multiple regression analysis revealed that the equation of the rhizosphere-based method was the simplest one, and no soil properties variables needed to be added. In contrast, the equations of other one-step extraction methods were more complicated, and soil properties variables needed to be entered. The most distinct feature of the rhizosphere-based method was that the recommended method was suitable for acidic, neutral and near alkaline soils. However, the DTPA and EDTA extraction methods were suitable for calcareous soils only-or-only for acidic soils. The CaCl2, and NaNO3 extraction methods were only suitable for exchangeable metals. In short, the rhizosphere-based method was the most robust approach for evaluation of bioavailability of heavy metals in soils to wheat.  相似文献   

2.
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China’s minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl2 ≈ NH4OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.  相似文献   

3.
4.

Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS?+?TiO2, 100 g/kg SS, and 100 g/kg SS?+?TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS?+?TiO2 showed a significant (p?<?0.05) increase in the okra plant yield (287.87?±?4.06 g/plant) and other biochemical parameters such as fruit length (13.97?±?0.54 cm), plant height (75.05?±?3.18 cm), superoxide dismutase (SOD: 110.68?±?3.11 μ/mg), catalase (CAT: 81.32?±?3.52 μ/mg), and chlorophyll content (3.12?±?0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe?>?Mn?>?Cu?>?Zn?>?Cr?>?Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.

  相似文献   

5.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

6.
Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH4)2HPO4), 1% w/w MnO, and 5% w/w CaSO4. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil.  相似文献   

7.
A rhizosphere-based method was compared with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for the evaluation of bioavailability of heavy metals in soil to barley. The extractable amounts of Cr, Cu, Zn and Cd analyzed by the rhizosphere-based method correlated significantly with the metal content of barley roots. The extractable metals identified by DTPA, EDTA, CaCl2 and NaNO3 methods exhibited relatively poor or no correlation with the metal content of barley roots. The stepwise multiple regression equation of the rhizosphere-based method was the simplest one, as no soil properties needed to be entered, whereas the equations for the DTPA, EDTA, CaCl2 and NaNO3 extraction methods always require those variables. The most distinct feature of the rhizosphere-based method was that the proposed method was suitable for acidic, neutral and near alkaline soils. In contrast, the other extraction methods were restricted to soil types. In summary, the rhizosphere-based method is the most robust approach for evaluation of bioavailability of metals in soil to barley.  相似文献   

8.
重金属钝化剂可以改变土壤中重金属的形态,降低其在土壤中的有效浓度、植物毒性及生物有效性,影响污染土壤中植物的生长及其对重金属的吸收。在温室盆栽条件下研究了施加羟基磷灰石(HA)、纳米羟基磷灰石(nHA)、纳米零价铁(nFe0)和纳米TiO2nTiO2)对烟草植物修复铅镉污染土壤的作用。结果表明,HA降低土壤中Pb、Cd的有效性、促进烟草生长、增加了烟草叶、茎、根中Cd的吸收量和根系中Pb的吸收量,有利于Pb、Cd的钝化和植物修复。nHA也可以降低土壤中Pb、Cd的有效性,增加了烟草叶中Cd的吸收量,有利于Pb、Cd的钝化和Cd的植物提取。nFe0nTiO2对于土壤Pb和Cd的钝化作用和植物修复均没有显著影响。综合来看,HA最适合应用于烟草植物修复铅镉污染土壤。  相似文献   

9.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   

10.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   

11.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

12.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

13.
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.  相似文献   

14.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl2 solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

15.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

16.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

17.
Guan TX  He HB  Zhang XD  Bai Z 《Chemosphere》2011,82(2):215-222
Fertilization of crops with livestock manure (LM) is a common waste disposal option, but repeated application of LM containing high concentrations of heavy metals such as Cu could lead to crop toxicity and environmental risk. To examine the Cu availability and uptake by wheat in a Mollisol affected by Cu-enriched LM, pot experiments were conducted. LM (376 mg kg−1 Cu originally) was spiked with different concentrations of Cu (0, 100, 200, 400, 600 and 800 mg kg−1 soil, added as CuSO4) to simulate soil Cu contamination by LM application. The results indicated that Cu was predominately distributed in organic bound fraction, while the most drastic increase was found in reducible fraction. Acid-extractable fraction played a more important role than other fractions in controlling the mobility and bioavailability of Cu. DTPA-extractable Cu may overestimate the Cu bioavailability since DTPA solution could extract soluble and part of stable forms. The application of LM at 1% level significantly decline the Cu mobility, but that at 3% level exhibited the opposite effect.Although the quantities of Cu in wheat was very low compared with the accumulation in soil, Cu concentrations in roots increased evidently from 12 to 533 mg kg−1 and that in aerial parts were in a narrow range from 12.1 to 32.7 mg kg−1, indicating the more sensitivity of roots to the Cu toxicity. The Cu concentrations in grains after 3% manure application did not approach the threshold for Cu toxicity (<20 mg kg−1) even at higher Cu addition rates.  相似文献   

18.

The natural abundance of Cr and Ni in serpentine soils is well-known, but the food safety of rice grown in these hazardous paddy soils is poorly understood. The study evaluated the bioaccumulation of chromium (Cr) and nickel (Ni) in rice (Oryza sativa) grown in serpentine-derived paddy soils in the Philippines. Surface soil (0–20 cm) samples were collected and characterized across three (i.e., Masinloc, Candelaria, and Sta. Cruz) paddy areas in Luzon Island, Philippines. At least 3 to 4 whole rice plants at mature stage were uprooted manually in each sampling point where the soil samples were collected. The total Cr and Ni concentrations in rice (i.e., roots, shoots, and grains) and soil, soil physicochemical properties, bioaccumulation factor (BAF), translocation factor (TF), and the hazard quotients (HQ) were determined. Results revealed that Cr and Ni in rice were accumulated mostly in the roots. Although paddy soils had elevated total Cr and Ni concentrations, the BAF and soil-to-root TF values for Cr and Ni were < 1. In terms of human health risks, results further revealed low risk for both male and female Filipino adults as HQ values for Cr and Ni were < 1. While it is safe to consume rice grown in the area in terms of Cr and Ni dietary intake, more studies are necessary to understand the dynamics and bioavailability of these heavy metals in other crops and drinking water from tube wells in these areas in order to provide a more holistic human health-based assessments and to ensure consumer safety in serpentine areas. In addition, a more reliable data on Cr and Ni speciation in serpentine soils and crops is critically important. Further studies are also needed to understand the contribution of bioavailable heavy metals in improving the soil health to achieve food safety.

  相似文献   

19.
Environmental Science and Pollution Research - Atmospheric contamination by heavy metal(loid)s is a widespread global issue. Recent studies have shown foliar pathway of heavy metal(loid) uptake by...  相似文献   

20.
Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号