首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
五种农药对土壤转化酶活性的影响   总被引:23,自引:0,他引:23  
测定了5种农药(多菌灵、百菌清、多菌灵-百菌清混剂、吡虫啉、氯氰菊酯)对长春市郊大棚土壤转化酶活性的影响,对农药作用下的大棚土壤与农田土壤的转化酶活性进行了比较研究.结果表明,百菌清、百菌清-多菌灵混剂、氯氰菊酯在实验浓度范围内(0.1~50mg/g)明显抑制土壤转化酶活性;多菌灵、吡虫啉浓度低于0.1mg/g时,对转化酶有激活作用,而浓度高于0.5mg/g时抑制转化酶活性;百菌清和多菌灵联合使用,会使农药毒性明显增强;不同农药对大棚土壤、农田土壤转化酶活性的影响不同.  相似文献   

2.
近年来,随着现代工农业的迅速发展,污水排放量不断增加,造成了巨大的环境压力,并对人与其他生物的健康产生了威胁。微藻不仅能够去除污水中氮、磷等营养盐,对新兴有机污染物也同样具有良好的去除效果。该文从污水中分离得到小球藻,探求其在污水环境中去除吡虫啉(20 mg/L、60 mg/L)以及营养盐的效果。结果表明:(1)经过35 d培养,该体系对20 mg/L浓度处理组和60 mg/L浓度处理组中吡虫啉去除率分别达到56.89%和50.99%;(2)污水中总氮去除率约为65%,总磷去除率可达到90%;(3)丙二醛含量变化表明藻细胞很可能受到一定胁迫,但超氧化物歧化酶活性和类胡萝卜素含量变化表明藻细胞启动了保护机制。研究结果表明,分离的小球藻对污水中去除吡虫啉和营养盐的效果较好,且对吡虫啉具有良好抗性。  相似文献   

3.
广州地区农田土壤中有机氯农药残留分布特征   总被引:5,自引:0,他引:5  
以网格法在农田土壤中均匀布点,采集土壤样品75个,对广州地区农田土壤中有机氯农药含量及分布状况进行了研究。结果表明,试区土壤有机氯农药的检出率为100%,表明广州地区农田土壤中有机氯农药残留现象普遍存在。六六六(HCHs)和滴滴涕(DDTs)的平均含量分别为42.75μg/kg、52.76μg/kg,含量范围分别在1.35—803.72和2.73—1036.90μg/kg。与国内不同区域的同类研究相比,广州地区土壤的有机氯残留水平较高。在不同利用类型土壤中,有机氯残留状况有所差异,六六六在水稻土中残留量最高,而滴滴涕在菜园土中含量最高。  相似文献   

4.
河流及污水处理厂全氟化合物排放估算   总被引:8,自引:7,他引:1  
陈春丽  王铁宇  吕永龙  罗维  耿静 《环境科学》2011,32(4):1073-1080
为了解全氟化合物(PFCs)的环境排放强度,利用通量计算的方法,综合国内现有PFCs监测数据,对我国部分主要流域的河流水体和部分主要城市的污水处理厂PFCs排放通量进行了估算研究.环渤海北部沿海区域主要河流水体中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)排放总通量分别为122 kg/a和216 kg/a,其中大辽河和大凌河分别为该区域PFOS和PFOA排放的主要河流.珠江和长江是中国PFOS排放的主要河流,PFOS排放通量分别为4.47×103 kg/a和807 kg/a.长江和黄浦江为中国PFOA排放的主要河流,PFOA排放通量分别为3.92×104 kg/a和1.60×104 kg/a.天津市和北京市污水处理厂人均PFOS排放量分别为291 μg·(a·人)-1和221 μg·(a·人)-1,远低于瑞士和美国污水处理厂的人均PFOS排放量.城市污泥PFCs排放量较高区域多集中在PFCs相关生产厂家集中省份的工业较发达城市.研究结果可为进一步进行污染源识别以及控制和减少PFCs污染和排放提供科学依据.  相似文献   

5.
本文基于中国境内的湖泊、水库、河流等淡水系统CH4排放研究的相关成果,对203个湖泊(595个样点)、46个水库(221个样点)、112条河流(441个样点),总计1257个样点的CH4通量数据进行统计分析,探讨了中国淡水系统(湖泊、水库、河流)CH4排放的一般特征,总结了当前研究进展,并进一步估算和评估了中国淡水系统CH4排放总量水平.结果表明:1)中国湖泊CH4排放通量平均为(1.17±1.87) mg/(m2·h),蒙新湖区((3.84±0.57) mg/(m2·h))和东北湖区((2.62±3.54) mg/(m2·h))较高,青藏湖区((1.94±4.13) mg/(m2·h))次之,东部湖区((0.81±0.90) mg/(m2·h))较低,云贵湖区((0.19±0.26) mg/(m2·h))最低;湖泊CH4排放通量呈显著的纬度模式,高纬度地区湖泊CH4排放高于低纬度地区;2)水库CH4排放通量((1.25±1.78) mg/(m2·h))与湖泊相似,水库消落带较高的排放通量((4.34±4.45)mg/(m2·h))对水库CH4排放具有重要贡献;3)河流CH4排放((0.82±1.14) mg/(m2·h))略低于湖库,长江水系CH4排放通量((0.98±2.38) mg/(m2·h))和黄河水系((0.85±0.75) mg/(m2·h))相近,高于海河水系((0.54±0.93) mg/(m2·h)),辽河、珠江水系研究较少,数据变异性极大;4)受降水、温度、径流稀释等影响,淡水系统CH4排放呈显著的季节变化,其中湖库排放夏季高于秋季,冬春季较低,而河流则春秋季高于夏冬季;5)基于外推法估算全国湖泊、水库、河流CH4排放总量分别约为0.96,0.29,0.76Tg/a,相当于全国湿地系统排放的75%.由于较大的时空变异性以及监测数据分布的不均匀性,目前估算存在较大的不确定性,但淡水系统CH4排放在全球气候变化中的贡献仍不容小觑.  相似文献   

6.
采用自主研发的原位培养装置,开展了太湖流域典型河流水体含氮物消减速率及其影响因素研究.结果表明,总氮和氨氮消减速率呈现显著的空间差异性(P<0.05),消减速率分别为(280.6±180.0)~(1458.8±725.7)mg/(m3·d)、(35.2±3.7)~(343.6±88.4)mg/(m3·d),但硝态氮消减速率(44.3±7.6)~(521.2±19.2)mg/(m3·d))无显著的空间差异性(P>0.05).微生物作用下氮素消减速率为95.0~733.1mg/(m3·d),分别占含氮物总消减速率和总负荷的12.9%~50.3%和2.0%~13.4%,非微生物作用下氮素消减速率为180.0~996.7mg/(m3·d),占含氮物总消减速率和总负荷的49.8%~87.0%和7.4%~25.7%,说明污染物进入水体,短期内微生物作用对含氮物消减速率的贡献较低.氮素消减速率与TN、NO3-、SS均呈线性相关关系(P<0.05),说明TN、NO3-、SS在一定程度上是氮素消减作用的影响因素.  相似文献   

7.
北京地区土壤中有机氯农药类POPs残留状况研究   总被引:47,自引:8,他引:39  
2004年5—7月采集了北京地区115个土壤表层样品,利用ASE萃取技术,使用GC/MS方法测定了样品中的六氯苯、氯丹、滴滴涕(DDT,DDE和DDD)、艾氏剂、狄氏剂、异狄氏剂、七氯和灭蚁灵的检出率及残留量.结果表明,北京土壤中六氯苯、滴滴涕的检出率很高,狄氏剂、异狄氏剂、七氯、灭蚁灵未检出.总有机氯农药类POPs物质质量分数平均值为77.7 μg/kg.其中滴滴涕占总有机氯农药类POPs物质的98.9%,是北京地区土壤中残留有机氯农药类POPs物质的主要成分,城市公园、园林土壤是城市滴滴涕的主要污染源.六氯苯是北京地区土壤中普遍存在的一类持久性有机污染物,但残留量很低.氯丹检出率和残留量均很低,六氯苯和氯丹没有对土壤质量造成危害.   相似文献   

8.
珠江三角洲地区土壤有机氯农药分布特征及风险评价   总被引:9,自引:4,他引:5  
窦磊  杨国义 《环境科学》2015,36(8):2954-2963
在珠江三角洲经济区采集了7种典型农用地的605个表层样品,采用GC-ECD定量测定土壤中有机氯农药(OCPs)含量,并对其残留特征、区域分布、可能来源和潜在生态风险进行了分析.结果表明,研究区土壤中OCPs检出率达97.85%,残留浓度最高值为649.33μg·kg-1,平均值为20.67μg·kg-1,主要检出物是DDTs、HCHs、硫丹硫酸盐和甲氧滴滴涕.与国内其他地区相比,研究区土壤HCHs和DDTs残留属于中下水平.OCPs分布区域特征非常明显,高含量区主要分布在人口密集,工农业生产活动强度大的珠三角中心城市区域.不同土地利用类型土壤OCPs残留量差异较大,耕地残留量较高,且菜地土壤中有机氯农药残留量最高,其次是园地,林地残留量最低.来源分析表明,土壤中HCHs主要来源于林丹使用,DDTs主要来源于早期施用农药的残留,局部地区三氯杀螨醇已经成为土壤DDTs污染的主要来源.参照土壤环境质量标准,研究区HCHs残留量一级、二级标准合格率分别为97.5%和100%,DDTs一级、二级标准合格率分别为95.5%和97.7%.土壤HCHs残留属于低风险,DDTs类有机氯农药对研究区生物可能存在一定的生态风险,但危害性总体较低.  相似文献   

9.
天津地区土壤中六六六(HCH)的残留及分布特征   总被引:52,自引:4,他引:52  
2001年5月采集并测定了天津地区188个土壤表层样品的α-HCH,β-HCH,γ-HCH和δ-HCH等有机氯农药的残留量.与1981年的残留量相比较,各区县土壤中親CH有较大幅度减少,但4种HCH异构体的残留仍然较高.其中-HCH是最主要的残留污染物,最高浓度超过1000ng/g.1970~1980年HCH施用量较高的地区如今土壤中的残留量仍然较高,城区样品中HCH的残留浓度高于非城区,而污灌区与非污灌区土壤中的残留水平差异不显著.土壤TOC含量与親CH有较为显著的相关关系.  相似文献   

10.
湖南省土壤中有机氯农药的残留规律研究   总被引:10,自引:5,他引:5  
2004年5月采集了湖南省120个土壤样品,采用AES萃取技术,用GC-MS方法测定了样品中的六氯苯、滴滴涕(DDTs)、氯丹、艾氏剂、狄氏剂、异狄氏剂、七氯和灭蚁灵.结果显示:六氯苯和DDTs的检出率为100%,氯丹和灭蚁灵的检出率较低,艾氏剂、狄氏剂、异狄氏剂和七氯均未检出,说明六氯苯和DDTs曾在湖南省广泛施用.w(有机氯农药)平均值为115.3 μg/kg,其中w(DDTs)占w(有机氯农药)的96.44%,在全部120个样点中有21.67%的土壤样品的w(DDT)/w(DDE+DDD)大于1,表明DDTs曾是湖南省用于农作物的主要杀虫剂,并且近期仍然有输入.不同使用功能的土壤中有机氯农药的残留量也不同,表现为旱地中的残留量高于水稻田,菜地中以辣椒地的残留量最高,茶场土壤中的残留量最低.   相似文献   

11.
蔬菜水果中25种有机氯农药残留快速检测方法   总被引:25,自引:1,他引:25  
采用固相萃取替代传统的液-液萃取技术和柱层析前处理技术,使蔬菜、水果中有机氯25种农药残留迅速得到分离、净化和浓缩.用双柱双ECD气相色谱同时定性、定量测定25种有机氯农药残留;25种农药在6种蔬菜、水果中3个浓度添加水平,平均回收率为70%-120%,变异系数小于20%,在HP-l和HP-17柱上最低检出限分别为:0.0011-0.0600mg/kg,0.0010—0.7575mg/kg.一个蔬菜、水果样品经一次处理,在1.0-l5小时内即可完成农药残留的检测,确定有无超标和违禁农药残留。  相似文献   

12.
收集了2000~2014年发表的关于国内不同膳食中Cd浓度研究文献,统计出不同区域各种主要膳食中Cd含量,结合2002年开展的膳食总调查结果,计算了不同地区居民膳食Cd暴露量,推导了考虑膳食Cd暴露情景下土壤中Cd的健康风险评估筛选值.结果显示,我国居民膳食Cd摄入量低于FAO/WHO(联合国粮农组织/世界卫生组织)于2010年颁布的允许Cd摄入量0.833μg/(kg体重?d).其中,全国范围内居民膳食Cd摄入量的平均值为0.444μg/(kg体重?d),高于北方[0.240μg/(kg体重?d)]、北京[0.160μg/(kg体重?d)]和上海[0.408μg/(kg体重?d)]地区的平均值,低于南方地区的平均值[0.518μg/(kg体重?d)].全国、北方及南方地区对Cd摄入量贡献最大的膳食主要为蔬菜、米及其制品、面及其制品、水产和肉类;北京地区对Cd摄入贡献较大的膳食依次为蔬菜、面及其制品、水果、米及其制品和水产;上海地区对Cd摄入贡献较大的膳食依次为蔬菜、水产、米及其制品、肉类.考虑膳食Cd摄入后推导的工商业用地情形下的筛选值低于不考虑膳食Cd摄入情形下的推导值(829mg/kg),其中,全国范围、北方、南方、北京和上海地区的筛选值分别为461,630,400,697和492mg/kg.基于不同尺度膳食摄入量的统计结果推导的筛选值差异明显,其中,南方地区筛选值是全国筛选值的86.8%,北方、北京和上海地区分别是全国范围推导值1.4倍、1.5倍和1.1倍.在制订国家层面Cd的筛选值时,应充分考虑各区域膳食Cd的暴露特性,以避免因制订统一值导致高估或低估局部区域居民的健康风险.  相似文献   

13.
适合大棚蔬菜的农药评价筛选   总被引:3,自引:1,他引:3  
通过对农药使用的危险性评价方法,共筛选出77种适合于大棚生产的化学农药和生物农药,其中杀虫剂35种,杀菌剂25种,除草剂17种。为使大棚蔬菜的农药残留量低于国家食品卫生标准,应优先使用高效农药,最理想级的农药用量为〈49.5g/hm^2,理想级为〈163.5g/hm^2,被评为危险级和较危险级的23种农药,不应在大棚蔬菜生产和绿色食品生产中使用。  相似文献   

14.
多菌灵在稻田水、土壤及稻米中的残留研究   总被引:1,自引:0,他引:1  
采用田间试验方法,研究了多菌灵在水稻上的消解动态及最终残留。结果表明:多菌灵在田水和土壤中的消解动态均符合一级动力学方程,原始沉积量与施药剂量、施药次数密切相关,其半衰期分别为3.07~3.25d和6.12~6.25d。按推荐剂量231g/hm2最多施药3次,在收获的稻米中多菌灵的残留量低于中国、食品法规委员会(CAC)及日本的MRL标准。  相似文献   

15.
农药在大棚蔬菜上的残留消解   总被引:10,自引:1,他引:10  
通过对6种农药在7种大棚作物上的共14次农药残留消解试验,及与露地作物所作的比较表明,除粉锈宁在大棚草莓上的消解外,农药在大棚蔬菜上的残留消解速度要慢于露地蔬菜,大棚空间农药沉降于蔬菜,是消解慢的重要原因,而环境条件对消解的影响程度还需进一步研究。该文指出,消解慢和大棚空气中浓度高;是大棚生产中两个突出的农药污染问题,前者导致上市大棚蔬菜的农药超标率高,后者为农事操作人员带来了恶劣的工作条件,需采  相似文献   

16.
Residue analysis and dissipation of monosulfuron in soil and wheat   总被引:4,自引:1,他引:3  
HPLC-UV residue analytical method for monosulfuron [ N-[( 4‘-methyl ) pyrimidin-2‘-yl ]-2-nitrophenylsulfonyl urea] in soil and wheat was developed. Monosulfuron residues were recovered by solvent extraction, followed by liquid-liquid partition, and C18 cartrige clean-up. Excellent method recoveries ranging from 95%-104% for both fortified soil and wheat grain were obtained with coefficients of variation 1.5%-11.8%. The minimum detectable quantities in soil and wheat were both 4 ng, the limit of detection was 0.02 mg/kg. When monosulfuron was applied according to double dosage of maximum recommended use direction(120 g ai/hm^2 of 10% monosulfuron wettable powder sprayed for once during development of wheat ) in field studies conducted in Shandong Province and near Beijing, monosulfuron residues was not detected in soil and wheat samples collected 75 d after application. Laboratory soil degradation studies showed that monosulfuron degraded faster in acidic soil and strong alkaline soil than in neutral or weak alkaline soil. Half lives in Jiangxi soil, Shijiazhuang soil, Jiangsu soil and Heilongjiang soil were 41, 48, 87 and 84 d respectively. Monosulfuron residues dissipated rapidly in Shandong and Beijing field test sites with half-lives of less than 14 d.  相似文献   

17.
高效降解菌处理多菌灵农药生产废水的研究   总被引:10,自引:0,他引:10  
从多菌灵农药生产废水的排放口附近土壤中分离得到14株多菌灵生产废水的高效降解菌,其中13号菌能高效降解多菌灵农药。5号菌能高效降解废水中的中间产物邻苯二胺。经鉴定.这2株菌均为假单胞菌(Pseudomonas sp.)。将这14株高效菌混合培养后与活性污泥分别投加到SBR反应器。通过正交试验得到各自的量佳工艺条件.同时比较出水的COD去除率。结果表明。采用高效菌处理多菌灵农药废水.COD去除率比活性污泥法高出29.1%。  相似文献   

18.
广东省荔枝园土壤农药残留现状研究   总被引:3,自引:1,他引:2  
荔枝收获完毕后在广东省荔枝主产区采集208个荔枝园土壤样本,检测了9种荔枝常用农药甲霜灵、代森锰锌、多菌灵、溴氰菊酯、氯氰菊酯、三氟氯氰菊酯、敌百虫、乐果和敌敌畏的残留含量.结果表明,农药检出率为氯氰菊酯(59.1%)多菌灵(51.0%)代森锰锌(11.1%)甲霜灵(6.7%)三氟氯氰菊酯(3.4%).乐果和敌敌畏仅在个别果园检出,溴氰菊酯和敌百虫均未检出.土壤同时检出不同种类农药果园的百分数为只检出1种农药(40.4%)同时检出2种(31.3%)未检出(18.8%)同时检出3种(8.2%)同时检出4种(1.4%).检出的7种农药中,代森锰锌残留平均含量最高达39.05μg·kg-1,氯氰菊酯次之为7.83μg·kg-1.其它5种农药平均含量为0.19~1.65μg·kg-1.整体上广东省荔枝园土壤农药残留状况较轻.  相似文献   

19.
何姝  董慧峪  任南琪 《环境科学》2023,44(1):180-188
为阐明我国东南地区典型饮用水源地农药类微污染物的污染特征及生态风险,检测评估了某省7个水库的苯并咪唑类、酰胺类、三唑类和有机磷类等19类共55种常用农药的检出频率、检出浓度以及每种农药对于绿藻、水蚤和鱼类这3种不同营养级生物的风险商.在分析的55种农药中,多菌灵和乙草胺的检出频率为100%,12种农药的检出频率在80%以上.多菌灵的检出浓度最高(77.7 ng·L-1),其次是乙草胺(51.6 ng·L-1).风险评估结果显示,大部分农药在目标区域都处于低风险状态.对于3种生物来说,乙草胺是绿藻的风险主导型农药,而多菌灵是鱼类和水蚤的风险主导型农药.  相似文献   

20.
A systematic survey of As, Cd, Cr, Cu, Ni, Pb and Zn concentrations in vegetables from 416 samples (involving 100 varieties) in Beijing was carried out for assessing the potential health risk to local inhabitants. The results indicated that the metal concentrations in vegetables ranged from < 0.001 to 0.479 g/g fresh weight (fw) (As), < 0.001 to 0.101 g/g fw (Cd), < 0.001 to 1.04 g/g fw (Cr), 0.024 to 8.25 g/g fw (Cu), 0.001 to 1.689 g/g fw (Ni), < 0.001 to 0.655 g/g fw (Pb) and 0.01 to 25.6 g/g fw (Zn), with average concentrations of 0.013, 0.010, 0.023, 0.51, 0.053, 0.046 and 2.55 g/g fw, respectively. The results showed that the concentrations of As, Cr, Cu, Cd, Pb and Ni in vegetables from open-fields were all significantly higher than those grown in greenhouses. In addition, in local-produced vegetables, all HMs except Zn were significantly higher than those in provincial vegetables. The estimated daily intake (EDI) of As, Cd, Cr, Cu, Ni, Pb and Zn from vegetables was 0.080, 0.062, 0.142, 3.14, 0.327, 0.283 and 15.7 g/(kg body weight (bw) d) for adults, respectively. Arsenic was the major risk contributor for inhabitants since the target hazard quotient based on the weighted average concentration (THQw) of arsenic amounted to 44.3% of the total THQ (TTHQ) value according to average vegetable consumption. The TTHQ was lower than 1 for all age groups, indicating that it was still safe for the general population of Beijing to consume vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号