首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
为研究常见化学品对偶氮二异丁腈(AIBN)热稳定性的影响,利用C600微量热仪对AIBN及AIBN与水、酸、氢氧化钠、氯化钠和铁等物质混合的热分解反应进行试验探究,根据试验数据得出相应的热力学和动力学参数,并利用傅里叶变换红外光谱仪对它们的分解产物进行分析。结果表明:AIBN本身的热稳定性较差;水、酸、氢氧化钠、氯化钠和铁等物质使AIBN的放热反应变剧烈,反应对温度的变化更敏感,反应速率常数增大;这些物质的加入不会改变AIBN的热分解反应产物。  相似文献   

2.
为获得偶氮二异丁腈(AIBN)在各种热应力条件下的危险参数,通过简化的压力容器试验测试AIBN的热分解激烈性等级,采用差示扫描量热仪(DSC)和绝热量热仪(ARC)对AIBN的热分解过程进行研究,用动力学与热稳定性分析软件AKTS计算动力学参数在整个反应进程中的变化情况,并根据ARC测试结果推算自加速分解温度(TSADT)。结果表明:AIBN的热分解激烈性为Ⅱ类,易呈现爆炸特性;其初始分解温度和TSADT很低,分别约为78℃和61℃,且分解放热过程和熔融吸热过程同时发生。因此,在AIBN的生产、使用、贮存和运输等过程中应加强温度监控,并根据实际情况采取降温措施。  相似文献   

3.
为研究环氧乙烷热稳定性及杂质对其影响,利用C600微量量热仪对环氧乙烷进行热分解试验研究,获得了环氧乙烷分解活化能和绝热条件下到达最大反应速率所需时间(TMRad)等动力学参数.研究了氢氧化钾固体、45%氢氧化钾溶液、三氧化二铁和六水三氯化铁对环氧乙烷热分解特性的影响.结果表明:随温升速率的增加,环氧乙烷热分解起始放热温度逐渐增大;分解活化能E在55~ 90 kJ/mol;环氧乙烷在常温下不易发生热失控;但氢氧化钾固体、45%氢氧化钾溶液、三氧化二铁和六水三氯化铁均对环氧乙烷的热分解有一定程度的影响,使其起始放热温度和最大放热温度都有不同程度的降低,且氢氧化钾溶液和氢氧化钾固体的影响最为明显.  相似文献   

4.
为评价物料混合对危险化学品热化学行为的影响,采用热分析-红外/质谱联用技术(TA-FTIR/MS)研究硝酸铵、柠檬酸和蔗糖的混合物的热化学行为。通过对硝酸铵及其混合物的分解温度和分解过程中逸出气体的分析,发现硝酸铵、柠檬酸和蔗糖的混合物热分解温度分别降低至135℃和153℃,而硝酸铵与甲基纤维素的混合物分解温度与硝酸铵基本相同为201℃,且各混合体系的气相分解产物均有氮氧化物(NOX),H2O和CO2。结果表明,混合物受热后其中的硝酸铵首先分解为硝酸和氨气;酸性物质和还原性物质由于对硝酸的分解反应有催化作用,使得混合物的热稳定性下降。  相似文献   

5.
通过对铁路疾病预防控制单位实验室易制爆危险化学品管理现状的概述,从制度、规范管理、储存和台账等方面分析影响易制爆危险化学品规范管理的主要因素,提出完善管理制度体系、健全档案管理、加强易制爆危险化学品使用过程管理等强化铁路实验室易制爆危险化学品管理的建议.  相似文献   

6.
为了研究十六烷值改进剂—硝酸异辛酯(EHN)的热稳定性与热危险性,采用C600微型量热仪测试硝酸异辛酯的热分解特性.利用热分析技术考察温升速率对EHN热分解特性的影响,并利用活化能、TMRad(在绝热条件下最大反应速率到达时间)和自加速分解速率(SADT)方法评价此改进剂的危险性.结果表明,EHN发生分解反应的起始放热温度和最大放热温度均随着温升速率的增加而增大,且四种温升速率的反应机理是一致的.计算得到EHN热分解活化能在143.6-213.6kJ/mol之间.通过绝热条件下TMRad评价得出EHN在常温常压条件下不易发生危险失控,EHN自加速分解温度为98℃>75℃,即在常温条件下储运是安全的,为储运硝酸异辛酯提供有力的数据支持.  相似文献   

7.
为了研究活性化合物热稳定性预测技术,调研了国内外活性化合物热稳定性预测技术的发展情况,综述了活性化合物起始放热温度、分解热、自加速分解温度的预测方法,着重介绍了定量结构-性质相关性(QSPR)研究方法在热稳定性预测领域的应用情况,分析了活性化合物热稳定性预测早期研究情况。基于量子力学计算的QSPR研究情况、QSPR数据样本的选取、分子描述符的选取、QSPR建模方法的选择,提出了热稳定性QSPR预测领域中存在的问题,并对热稳定性QSPR预测技术未来的发展方向进行了展望。  相似文献   

8.
借助差示扫描量热仪(Differential Scanning Calorimetry,DSC)对过氧化苯甲酰(Benzoyl Peroxide,BPO)的热分解过程进行研究。动态DSC结果表明,BPO的吸热峰和分解峰重叠,因而无法通过基于放热曲线的转化率计算其动力学参数。这也表明了该物质的高度危险性。等温DSC结果表明,BPO在固态时就会发生分解,具有自催化性质,易发生热分解反应失控;该物质的熔点在90~92℃。基于等温DSC数据,利用Friedman法计算了BPO的热分解动力学参数,推导出等温诱导期与温度的函数关系,计算得到等温诱导期为7 d时的环境温度(约为75℃)。使用有限元分析方法(Finite ElementAnalysis,FEA)模拟得到50 kg BPO的自加速分解温度(Self-Accelerating Decomposition Temperature,SADT)约为79℃。  相似文献   

9.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:2,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

10.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

11.
为深入研究N-甲基羟胺盐酸盐(NMHH)热分解的反应特征,应用密度泛函理论,在w B97xd/6-311++g(2df,2pd)水平下,对NMHH的初步分解产物N-甲基羟胺(NMHA)及质子化的NMHA热分解反应中涉及的反应物、过渡态、中间体、产物的几何结构和能量情况进行了优化计算,提出了可能的热分解路径。结果表明,NMHA与质子化NMHA均存在两种热分解路径。NMHA在两条路径下分解需越过的能垒为250.75 k J/mol与428.64 k J/mol,而质子化NMHA在对应分解路径下需要越过的能垒分别为217.19 k J/mol与286.77k J/mol。在对应路径下质子化NMHA分解需越过的能垒明显低于NMHA的直接分解,并且随着反应的持续进行,质子化的NMHA的形成和分解将越来越容易发生。这表明NMHH的分解具有自催化特征,与试验结果吻合。  相似文献   

12.
二氧化硫脲自热危险性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为评价二氧化硫脲的自热特性,采用同步热分析仪STA和化学品恒温试验箱对其热分解过程进行了研究。考察了质量为250g的样品在温度为100℃、120℃、140℃、160℃、180℃、200℃的自热特性,并考察了质量分别为50g、75g、100g、150g、200g、400g、600g、800g的样品在温度100℃条件下的自热特性。结果表明,二氧化硫脲的分解温度为1250℃,分解热为6013J/g,最大放热速率418mW/mg;二氧化硫脲的自热过程是一个热分解过程,自热最低起始温度为95℃,峰值温度最小为2015℃,且与质量呈函数关系;试验发现现有的自热试验标准或测试方法对二氧化硫脲危险性的划分存在一定的缺陷,建议以样品起始自热温度为基准到样品的峰值温差来判定其是否发生自热。  相似文献   

13.
石脑油罐硫铁化合物自然原因分析   总被引:11,自引:3,他引:11  
对一起石脑油罐硫化铁化合物自燃事故的经过和原因进行了分析,推断出发生在石脑油罐硫铁化合物自燃并非为FeS自燃,并提出了预防同类事故的防范措施。  相似文献   

14.
混酸中甲苯半间歇硝化过程的危险性研究   总被引:2,自引:2,他引:2  
为了解甲苯在混酸中硝化的危险性,用差示扫描量热法(DSC)测试甲苯、混酸及一硝基甲苯的热分解情况,用反应量热仪(RC1e)研究搅拌速度、温度及硝酸过用率3因素对目的反应的影响。结果表明,混酸分解温度最低,而当目的反应的3因素出现异常,以及反应过程中发生冷却失效时,均可导致硝化反应体系不稳定,此时若不停止加料,并采取措施,易引起混酸的分解,进一步可引起一硝基甲苯的分解,导致严重后果。  相似文献   

15.
为分析压力在乳化炸药泵送事故中的影响,运用高压加速量热仪对乳化炸药、硝酸铵和含有10%水分的硝酸铵样品热分解特性进行研究。结果表明:压力对于乳化炸药,硝酸铵和含有10%水分硝酸铵样品的热分解有着显著的影响,压力条件下虽然起始分解温度基本没有变化,但是样品反应速率有了显著的升高,导致放热量增大。水分的存在阻碍硝酸铵的热分解,在乳化炸药配方中适当增加水份含量可以提高乳化炸药生产安全性。分析认为相比于温度,压力对于泵送事故的影响更为关键。  相似文献   

16.
为研究高能钝感材料2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)与氟橡胶造型粉的热分解特性和热稳定性,利用绝热加速量热仪测试其在绝热条件下的热分解过程,获得了热分解的升温速率、温度和压力等随时间的变化关系及升温速率、压力随温度的变化曲线。结果表明,绝热分解开始前有一个缓慢的吸热升温过程,绝热分解过程主要有3个放热反应阶段,其中第二阶段升温速率升降幅度较大,为主要的热分解阶段。绝热分解反应的表观活化能、指前因子和反应热分别为358.87 kJ/mol、3.374×1027min-1和685.62 J/g。造型粉初始分解温度高达290.6℃,具有良好的热稳定性。  相似文献   

17.
为了分析过氧化二异丙苯(Dicumyl Peroxide,DCP)的热稳定性和热安全性,利用C80微量量热仪对DCP在空气中的热分解及稳定性能进行试验研究,得到了升温速率对DCP热分解的影响规律,运用AKTS高级热动力学软件计算得到DCP热分解的活化能及指前因子、绝热条件下最大反应速率到达时间TMRad和不同包装下的自加速分解温度。结果表明:随升温速率增加,DCP的起始放热温度和最大放热温度升高;并由Friedman法得到不同转化率下活化能E和指前因子A的关系,计算得到DCP热分解的活化能范围为50~130 kJ/mol;TMRad为1 h、8 h、24 h、50 h和100 h时对应的起始温度分别为105.33℃、84.38℃、74.38℃、68℃和62℃;DCP的储罐内径越大,其对应的自加速分解温度越低。在生产、制造、储存、运输等过程中,应防止因温度变化而引发DCP的自分解放热爆炸事故。  相似文献   

18.
石脑油罐硫铁化合物自燃原因分析   总被引:4,自引:0,他引:4  
对一起石脑油罐硫化铁化合物自燃事故的经过和原因进行了分析 ,推断出发生在石脑油罐硫铁化合物自燃并非为FeS自燃 ,并提出了预防同类事故的防范措施。  相似文献   

19.
为研究有机酸对H发泡剂热分解特性的影响,采用量热仪测试不同质量分数苯甲酸、水杨酸、邻苯二甲酸与H发泡剂混合物的热分解特性参数。结果表明:H发泡剂分解时,随着升温速率增加,外推起始分解温度Te、峰值温度Tp与最大放热速率随之升高。3种有机酸的加入均可以促进H发泡剂的分解,随着有机酸质量分数的增加,其外推起始分解温度和峰值温度呈现同步下降趋势。有机酸熔融生成的H+对H发泡剂分解过程具有显著影响。加入水杨酸能显著降低H发泡剂分解的热释放速率,降低H发泡剂分解过程中的热风险,当水杨酸质量分数达到24%时,较之混有苯甲酸与邻苯二甲酸的H发泡剂外推起始分解温度降低20 ℃。  相似文献   

20.
危险化学品储存若因人为疏忽或管理不善等因素,可能引起化学品泄漏甚至引起火灾、爆炸及毒性气体扩散等灾害意外事故,结果易导致瞬间大规模的死亡灾害以及长时间的环境污染。通过国外事故案例分析探讨,以引起企业对化学品储存安全及危害预防的重视,并提出方法建议以改善危险化学品的储存条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号