首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
This study evaluated the effect of alkaline industrial by-products such as flyash (FA) and redmud (RM) on phosphorus (P) mobilisation in abattoir wastewater irrigated soils, using incubation, leaching and plant growth (Napier grass [Pennisetum purpureum]) experiments. The soil outside the wastewater irrigated area was also collected and treated with inorganic (KH2PO4 [PP]) and organic (poultry manure [PM]) P treatments, to study the effect of FA and RM on P mobilisation using plant growth experiment. Among the amendments, FA showed the highest increase in Olsen P, oxalic acid content and phosphatase activity. The highest increase in Olsen P for PM treated non-irrigated soils showed the ability of FA and RM in mobilising organic P better than inorganic P (PP). There was over 85 % increase in oxalic acid content in the plant growth soils compared to the incubated soil, showing the effect of Napier grass in the exudation of oxalic acid. Both amendments (FA and RM) showed an increase in phosphatase activity at over 90 % at the end of the 5-week incubation period. The leaching experiment indicated a decrease in water soluble P thereby ensuring the role of FA and RM in minimising P loss to water bodies. FA and RM showed an increase in plant biomass for all treatments, where FA amended soil showed the highest increase as evident from FA’s effect on Olsen P. Therefore, the use of FA and RM mobilised P in abattoir wastewater irrigated soils and increased biomass production of Napier grass plants through root exudation of oxalic acid.  相似文献   

2.
In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal wastewater was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52 pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields. In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mugl(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while passing the top soil layer. Potential estrogenic effects are likely to disappear after irrigation, since the most potent steroid estrogens were not measurable.  相似文献   

3.
Fresh water scarcity is an increasing problem worldwide. Strategies to alleviate water scarcity include the use of low-quality water for irrigation. The risk of groundwater contamination by pollutants in this water is affected by soil heterogeneity and preferential flow. These risk factors can be assessed by measuring the spatio-temporal redistribution of uniformly applied water and solutes. We placed a soil monolith (height 29 cm) from an Australian vineyard on a 100-cell multi-compartment sampler (MCS). At this vineyard, treated wastewater is used in response to the severe shortage of water in the summer. We studied the leaching risk associated with heterogeneous or preferential flow by irrigating the soil column with 24 applications to simulate one year. We applied simulated rainfall as well as wastewater (which contained chloride) during summer while relying on rainfall only in winter. We compared the chloride leaching with the leaching of bromide, which was applied during one of the applications as a pulse. During the entire simulated year, leaching of solutes from the monolith was measured. The results indicate that the assumption of uniform flow would underestimate the risk for the fresh groundwater reserves: 25 % of the solutes are transported though 6 % of the soil’s cross-section. The spatial distribution of drainage and solute leaching varied little during the experiment. Consequently, the mass flux density pattern of the bromide pulse was comparable to that of the repeatedly applied chloride. However, the MCS data suggested lateral ‘escape’ from chloride to non-mobile areas, which means in the long run, considerable quantities of these solutes can build up in areas that do not receive irrigation water.  相似文献   

4.
Agricultural crops have a long history of being irrigated with recycled wastewater (RW). However, its use on vegetable crops has been of concern due to the potential prevalence of microcontaminants, such as pharmaceuticals and personal care products (PPCPs) in the latter, which represents a possible health hazard to consumers. We investigated the uptake of three PPCPs (atenolol, diclofenac, and ofloxacin), at three different concentrations in irrigation water (0.5, 5, and 25 μg L?1) in relation to three varying volumetric soil moisture depletion levels of 14 % (?4.26 kPa), 10 % (?8.66 kPa), and 7 % (?18.37 kPa) by various vegetable crop species. Experiments were conducted in a split-split block completely randomized design. PPCPs were extracted using a developed method of accelerated solvent extraction and solid phase extraction and analyzed via liquid chromatography mass spectrometry (LCMS). Results indicate that all treated crops were capable of PPCP uptake at nanogram per gram concentrations independent of the applied soil moisture depletion levels and PPCP concentrations. Ofloxacin was the chemical with the highest uptake amounts, followed by atenolol and then diclofenac. Although the results were not statistically significant, higher concentrations of PPCPs were detected in plants maintained under higher soil moisture levels of 14 % (?4.26 kPa).  相似文献   

5.
The Nitrate Leaching and Economic Analysis Package (NLEAP) model was used to evaluate effects of climate and N fertility on nitrate leaching from a 3-yr field experiment of continuous corn (Zea mays L.). Half of the plots were randomly chosen to be either nonirrigated or irrigated (based upon calculated potential evapotranspiration). Three replications of nitrogen (N) fertility (56, 112 and 224 kg ha−1) were used. Soil was a Hecla sandy loam to loamy sand (Pachic Udic Haploboroll). Soil and climate data were from the upper Midwest U.S.A. database for NLEAP. On-site data were used in the model when available.This study shows that NLEAP is capable of integrating data collected for nonirrigated and irrigated conditions on sandy soil for a wide range of N treatments and predicting the nitrate available for leaching (NAL). Precipitation distribution and amount were different in each year. Calculated NAL provided an excellent indicator of potential nitrate leaching hazard. NLEAP output showed that leaching of residual N on this sandy soil is very sensitive to early-spring precipitation. The NLEAP model provided valuable insights concerning effects of climate and N and irrigation management on N leaching. To obtain optimum yields while minimizing nitrate leaching, this study indicates the need to use soil and plant-tissue testing, post-emergence N-fertilizer application, and modem irrigation-scheduling technology. Also, use of the NLEAP model along with field-plot experiments provide additional important information concerning timing of N-leaching events relative to climate and an additional assessment of the effectiveness of fertilizer-N management decisions.  相似文献   

6.
The reuse of wastewater for irrigation of agricultural land is a well established practice but introduces many contaminants into the terrestrial environment including pharmaceuticals and personal care products. This study reports the persistence and leaching potential of a group of acidic pharmaceuticals, carbamazepine, and three endocrine disruptors in soils from the Tula Valley in Mexico, one of the largest irrigation districts in the world that uses untreated wastewater. After irrigation of soil columns with fortified wastewater over the equivalent of one crop cycle, between 0% and 7% of the total added amounts of ibuprofen, naproxen, and diclofenac and between 0% and 25% of 4-nonylphenol, triclosan, and bisphenol-A were recovered from the soil profiles. Carbamazepine was more persistent, between 55% and 107% being recovered. Amounts in leachates suggested that movement through the soil was possible for all of the analytes, particularly in profiles of low organic matter and clay content. Analysis of soil samples from the Tula Valley confirmed the general lack of accumulation of the acidic pharmaceuticals (concentrations from below the limit of detection to 0.61 μgkg(-1)) and endocrine disruptors (concentrations from below the limit of detection to 109 μgkg(-1)) despite continual addition through regular irrigation with untreated wastewater; there was little evidence of movement through the soil profiles. In contrast, carbamazepine was present in horizon A of the soil at concentrations equivalent to several years of additions by irrigation (2.6-7.5 μgkg(-1)) and was also present in the deeper horizons. The persistence and mobility of carbamazepine suggested a potential to contaminate groundwater.  相似文献   

7.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

8.
The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.  相似文献   

9.
The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L?1 COD and 30 mg L?1 BOD5) and inorganic pollutants (e.g., up to 0.5 mg L?1 Cu and 0.1 mg L?1 Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.  相似文献   

10.
《Chemosphere》2011,82(11):1437-1445
The reuse of wastewater for irrigation of agricultural land is a well established practice but introduces many contaminants into the terrestrial environment including pharmaceuticals and personal care products. This study reports the persistence and leaching potential of a group of acidic pharmaceuticals, carbamazepine, and three endocrine disruptors in soils from the Tula Valley in Mexico, one of the largest irrigation districts in the world that uses untreated wastewater. After irrigation of soil columns with fortified wastewater over the equivalent of one crop cycle, between 0% and 7% of the total added amounts of ibuprofen, naproxen, and diclofenac and between 0% and 25% of 4-nonylphenol, triclosan, and bisphenol-A were recovered from the soil profiles. Carbamazepine was more persistent, between 55% and 107% being recovered. Amounts in leachates suggested that movement through the soil was possible for all of the analytes, particularly in profiles of low organic matter and clay content. Analysis of soil samples from the Tula Valley confirmed the general lack of accumulation of the acidic pharmaceuticals (concentrations from below the limit of detection to 0.61 μg kg−1) and endocrine disruptors (concentrations from below the limit of detection to 109 μg kg−1) despite continual addition through regular irrigation with untreated wastewater; there was little evidence of movement through the soil profiles. In contrast, carbamazepine was present in horizon A of the soil at concentrations equivalent to several years of additions by irrigation (2.6–7.5 μg kg−1) and was also present in the deeper horizons. The persistence and mobility of carbamazepine suggested a potential to contaminate groundwater.  相似文献   

11.
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha?1) and Merlin Gold (1 L ha?1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L?1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L?1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L?1), while diketonitrile was detected in concentrations above 0.1 µg L?1 on 1 DAT in 2011 only.  相似文献   

12.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

13.
The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.  相似文献   

14.
Lin K  Gan J 《Chemosphere》2011,83(3):240-246
Presence of pharmaceuticals at trace levels in recycled water is an emerging issue impacting the beneficial reuse of treated wastewater, including practices such as irrigation and groundwater recharge in arid and semi-arid regions. To assess the environmental risks of irrigation with recycled water containing such micropollutants, in this study we evaluated sorption and degradation of five pharmaceuticals that are antibiotic and anti-inflammatory drugs in two soils collected from arid regions. Naproxen and trimethoprim showed moderate to strong sorption, while the sorption of diclofenac, ibuprofen and sulfamethoxazole was negligible in both soils. Under aerobic conditions, the studied compounds were susceptible to microbial degradation with half-lives varying from 4.8 to 69.3 d. Apart from sulfamethoxazole, the other compounds were relatively persistent under anaerobic conditions as indicated by a negligible loss over 84 d of incubation or half-lives >50 d. The degradation of the selected pharmaceuticals was influenced by microbial activities, oxygen status in the soil, soil type and compound characteristics. The poor sorption and relative persistence of diclofenac and ibuprofen under anaerobic conditions suggest that the two chemicals may pose a high leaching risk when using recycled for irrigation or groundwater replenishment.  相似文献   

15.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

16.
A soil column leaching study was conducted on an acidic soil in order to assess the impact of lime-stabilized biosolid on the mobility of metallic pollutants (Cu, Ni, Pb and Zn). Column leaching experiments were conducted by injecting successively CaCl2, oxalic acid and ethylenediaminetetraacetic acid (EDTA) solutions through soil and biosolid-amended soil columns. The comparison of leaching curves showed that the transport of metals is mainly related to the dissolved organic carbon, pH and the nature of extractants. Metal mobility in the soil and biosolid-amended soils is higher with EDTA than with CaCl2 and oxalic acid extractions, indicating that metals are strongly bound to solid-phase components. The single application of lime-stabilized biosolid at a rate ranging from 15 to 30 t/ha tends to decrease the mobility of metals, while repeated applications (2?×?15 t/ha) increase metal leaching from soil. This result highlights the importance of monitoring the movement and concentrations of metals, especially in acid and sandy soils with shallow and smaller water bodies.  相似文献   

17.
Nitrate leaching in an Andisol treated with different types of fertilizers   总被引:16,自引:0,他引:16  
Nitrate (NO3) leaching was studied in an Andisol treated with four N fertilizers (SC: swine compost, CU: coated urea, AN: ammonium N, or NF: no fertilizer) for 7 years. Sweet corn (Zea mays L.) was grown in summer, followed by Chinese cabbage (Brassica rapa L. var. amplexicaulis) or cabbage (Brassica oleracea L. var. capitata) in autumn each year. In chemical fertilizer plots treated with AN or CU, NO(3)-N concentrations in soil water at 1-m depth increased markedly in the summer of the second year and fluctuated between 30 and 60 mg l(-1). In the SC plot, NO(3)-N concentration started increasing in the fourth year, reaching the same level as in the AN and CU plots in the late period of the experiment. In the NF plot, NO(3)-N concentration was about 10 mg l(-1) for the first 4 years and decreased to 5 mg l(-1). The potential NO(3)-N concentrations by an N and water balance equation satisfactorily predicted NO(3)-N concentration in the AN and CU plots, but substantially overestimated that in the SC plot, presumably because a large portion of N from SC first accumulated in soil in the organic form. Our results indicate that, under the Japanese climate (Asian monsoon), excessive N from chemical fertilizers applied to Andisols can cause substantial NO3 leaching, while compost application is promising to establish high yields and low N leaching during a few years but would cause the same level of NO3 leaching as in chemically fertilized plots over longer periods.  相似文献   

18.

Pakistan is an agricultural country and due to the shortage of clean water, most of the irrigated area (32,500 ha) of Pakistan was supplied with wastewater (0.876?×?109 m3/year). Concentrations of heavy metals in radish (Raphanus sativus) and turnip (Brassica rapa) taken from vegetable fields in Sargodha, Pakistan, were measured. Untreated wastewater was used persistently for a long time to irrigate these vegetable fields. A control site was selected that had a history of fresh groundwater irrigation. Mean metal concentrations were found for irrigation water, soil, and vegetables. In irrigation water, concentrations of Mo and Pb at three sites and Se at sites II and III were higher than the recommended limits. In vegetables, concentrations of Mo and Pb were above the maximum permissible limits. High bioconcentration factor was observed for Zn (12.61 in R. sativus and 11.72 in B. rapa) at site I and high pollution load index was found for Pb (3.89 in R. sativus and 3.87 in B. rapa) at site II. The differences in metal concentrations found in samples depended upon different soil nature and assimilation capacities of vegetables at different sites which in turn depended upon different environmental cues. The entrance of metal and metalloids to human body may happen through different pathways; however, the food chain is the chief route through which metals are transferred from vegetables to individuals. Health risk index observed for metals, (Mo, As, Ni, Cu, and Pb) higher than 1 indicated high risk through consumption of these vegetables at three sites.

  相似文献   

19.
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system.  相似文献   

20.
Level and distribution of DDT in surface soils from Tianjin, China   总被引:28,自引:0,他引:28  
Gong ZM  Tao S  Xu FL  Dawson R  Liu WX  Cui YH  Cao J  Wang XJ  Shen WR  Zhang WJ  Qing BP  Sun R 《Chemosphere》2004,54(8):1247-1253
One hundred and eighty eight surface soil samples were collected from the Tianjin area to study the contamination of DDT and its metabolites. Measurements were taken for p,p'-DDE, p,p'-DDD, p,p'-DDT, o,p'-DDE, o,p'-DDD and o,p'-DDT for all samples. The results indicated that p,p'-DDT and p,p'-DDE were the predominant contaminant compounds in the surface soil samples, with mean concentrations of 27.5 and 18.8 ng g(-1) respectively. No significant differences in DDT concentrations were found between the soils from wastewater treated irrigated areas and other areas, suggesting that wastewater irrigation is not an important source of DDT in the area. However, the spatial distribution of soil DDTs levels in the area did correlate well with early direct application rates of pesticides. In addition, both pH level and organic carbon content are also known factors affecting the level of DDT and its metabolites. Although it was assumed that the use of these chemicals was banned in the early 1980s, the current concentration levels appear to be too high to be mere residuals after 20 years degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号