首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The effect of phenol concentration on phenol biodegradation at an industrial site in the south of Wales, United Kingdom, was investigated using standard Bio‐Sep® Bio‐Traps® and Bio‐Traps® coupled with stable isotope probing (SIP). Unlike many 13C‐amendments used in SIP studies (such as hydrocarbons) that physically and reversibly adsorb to the activated carbon component of the Bio‐Sep® beads, phenol is known to irreversibly chemisorb to activated carbon. Bio‐Traps® were deployed for 32 days in nine site groundwater monitoring wells representing a wide range of phenol concentrations. Bio‐Traps® amended with 13C‐phenol were deployed together with non‐amended Bio‐Traps® in three wells. Quantitative polymerase chain reaction (qPCR) analysis of Bio‐Traps® post‐deployment indicated an inhibitory effect of increasing phenol concentration on both total eubacteria and aerobic phenol‐utilizing bacteria as represented by the concentration of phenol hydroxylase gene. Despite the chemisorption of phenol to the Bio‐Sep® beads, activated carbon stable isotope analysis showed incorporation of 13C into biomass and dissolved inorganic carbon (DIC) in each SIP Bio‐Trap® indicating that chemisorbed amendments are bioavailable. However, there was a clear effect of phenol concentration on 13C incorporation in both biomass and DIC confirming phenol inhibition. These results suggest that physical reductions of the phenol concentrations in some areas of the plume will be required before biodegradation of phenol can proceed at a reasonable rate. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
Bio‐Trap®–based in situ microcosm studies were conducted to evaluate EHC‐M® stimulated degradation of mono‐, di‐, and trichlorobenzenes in anaerobic groundwater at a site in Michigan. The data show that the EHC‐M® amendment stimulated an overall increase in microbial activity and a shift in the microbial community structure, indicating more reduced conditions. Stable isotope probing with 13C6‐chlorobenzene demonstrated attenuation of chlorobenzene and subsequent separation and characterization of the 12C‐ and 13C‐deoxyribonucleic acid (DNA) fractions were used to identify the attenuating microbes. These data clearly show the participation of an obligate aerobe in the chlorobenzene biodegradation process. Decreases in concentrations of trichlorobenzenes were also observed in comparison to a control. Due to the thermodynamically favorable reducing conditions stimulated by EHC‐M®, the mechanism of degradation of the trichlorobenzenes is presumed to be reductive dehalogenation. However, on the strength of the DNA‐based analysis of microbial community structure, concurrent microaerophilic degradation of chlorobenzene or its metabolites was definitively demonstrated and cannot be ruled out for the other chlorobenzenes. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
In response to an oxygenated gasoline release at a gas station site in New Hampshire, a temporary treatment system consisting of a single bedrock extraction well, a product recovery pump, an air stripper, and carbon polishing units was installed. However, this system was ineffective at removing tertiary butyl alcohol from groundwater. The subsequent remedial system design featured multiple bedrock extraction wells and an ex situ treatment system that included an air stripper, a fluidized bed bioreactor, and carbon polishing units. Treated effluent was initially discharged to surface water. Periodic evaluation of the remediation system performance led to system modifications, which included installing an additional extraction well to draw contaminated groundwater away from an on‐site water supply well, adding an iron and manganese pretreatment system, and discharge of treated effluent to an on‐site drywell. Later, the air stripper and carbon units were eliminated, and an infiltration gallery was installed to receive treated, oxygenated effluent in order to promote flushing of the smear zone and in situ bioremediation in the source area. This article discusses the design, operation, performance, and modifications to the remediation system over time, and provides recommendations for similar sites. © 2007 Wiley Periodicals, Inc.  相似文献   

6.
A new approach to the maintenance of large microbial populations for bioremediation purposes has been developed in which a centrifugal bioreactor is used to immobilize microbial populations at extremely high density. The cells are ordered into a three‐dimensional array through which wastewater or groundwater volumes may be flowed, unimpeded by frits or screens. The process methodology is independent of the type, shape, or viability of the individual cells immobilized and, thus, may be adapted to many different bioremediation needs. The utilization of this new process has been explored for three different types of remediation: the removal of heavy metals from wastewater, the aerobic degradation of methyl‐tert‐butyl ether (MTBE), and the anaerobic reduction of nitrate to nitrogen gas. This article discusses the use of centrifugal bioreactors and their application in remediation. © 2001 John Wiley & Sons, Inc.  相似文献   

7.
Proving the viability of in situ bioremediation technologies and gathering data for its full‐scale implementation typically involves collecting multiple rounds of data and often completing microcosm studies. Collecting these data is cumbersome, time‐consuming, costly, and typically difficult to scale. A new method of completing microcosm studies in situ using an amendable sampling device deployed and incubated in groundwater monitoring wells provides actionable data to expedite site cleanup. The device, referred to as a Bio‐Trap® sampler, is designed to collect actively colonizing microbes and dissolved organic compounds from groundwater for analysis using conventional analytical techniques and advanced diagnostic tools that can answer very specific design and viability questions relating to bioremediation. Key data that can be provided by in situ microcosm studies using Bio‐Trap® samplers include definitively demonstrating contaminant destruction by using compound‐specific isotope analysis and providing data on the mechanism of the degradation by identifying the responsible microbes. Three case studies are presented that demonstrate the combined flexibility of Bio‐Trap® samplers and advanced site diagnostics. The applications include demonstrating natural attenuation of dissolved chlorinated solvents, demonstrating natural attenuation of dissolved petroleum compounds, and using multiple Bio‐Trap® samplers to comparatively assess the viability of bioaugmentation at a chlorinated solvent release site. At each of these sites, the in situ microcosm studies quickly and cost‐effectively answered key design and viability questions, allowing for regulatory approval and successful full‐scale implementation. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Over the past few years, the focus of our research has been to respond to the recognized needs for novel biological processes that are capable of destroying a wide range of biodegradable pollutants and providing the perfect environment for complex interspecies interactions required for the degradation of environmental contaminants. A new biotechnology process called Biological Permeable Barrier (BPB) was developed to provide high microbial density, stable environmental conditions, and protective measures for microbial activities for in‐situ bioremediation of contaminated groundwater. This patented technology (U.S. Patent 6,337,019 ) is based on the creation of a structured matrix, or Bio‐beads, that provides the perfect environment for organic‐degrading microorganisms to establish biofilms capable of destroying the contaminants in water with remarkable stability and control. For over 240 days, the viability and performance of the BPB (Bio‐beads) system were shown for biodegradation of a targeted contaminant, 2,4,6‐ trichlorophenol (TCP), under a variety of operating and stress conditions (Razavi‐Shirazi, 1997 ). Extensive batch experiments were also conducted to obtain necessary data to determine the rate of TCP diffusion into the Bio‐beads, adsorption properties of the Bio‐beads, and substrate‐use rate of the mixed bioculture as free cells and as immobilized cells (Bio‐beads). A simulated model of BPB was also characterized with its porosity, permeability, and compressibility or deformation under typical field conditions. Our extensive research showed that BPB takes advantage of a controlled biotechnology process to overcome the disadvantages and uncertainties associated with conventional biological processes. A summary of our investigation is presented here. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
At the Old Rifle uranium mill‐tailing site in eastern Colorado, a test of subsurface amendment with acetate to stimulate the reductive immobilization of uranium was monitored by using lipid biomarker analysis and incorporation of 13C‐labeled acetate into lipid biomarkers. Both sediment and groundwater samples were analyzed. Within 7 days of acetate addition, groundwater microbial biomass increased by a factor of 5, and remained higher than control values in most samples for the 28 days sampled. At 29 days after the beginning of acetate amendment, 4 of 12 sediment samples had microbial biomass greater than the 95 percent confidence interval of controls. The mole percents of the phospholipid fatty acids 16:1ω7c and 16:1ω5c increased over control values upon acetate amendment, and incorporated high levels of 13C from labeled acetate in groundwater and sediment samples. 16:1ω7c is a biomarker for Geobacter, and evidence is provided that 16:1ω5c represents an unidentified iron‐reducing bacterium, probably a member of the Desulfobulbaceae. Biomarkers for organisms other than iron‐reducing bacteria, iso‐ and anteiso‐branched fatty acids and 18:1ω9c, decreased upon acetate amendment, and had their highest stable isotope incorporation at least 4 days after labeled acetate amendment ended, evidence for carbon‐sharing between iron‐reducers and other microorganisms. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
This article addresses the removal of methyl tertiary‐butyl ether (MTBE) from water, using Fenton's Reagent. Although complete mineralization of MTBE by Fenton's Reagent was not achieved, greater than 99 percent destruction of MTBE was realized. This was accomplished at a Fe+2:H2O2 ratio of 1:1 and 1 hour of contact time. In all tests, twice the stoichiometric ratio of H2O2 to MTBE was used. The major by‐products were tertiary‐butyl alcohol, tertiary‐butyl formate, and acetone with traces of 2‐methyl‐1‐propene (isobutylene). While small quantities of O2 evolved, no significant quantity of CO2 gas was detected.  相似文献   

11.
The feasibility of the biodegradation of HCH and its intermediates has been investigated. A recent characterisation of two sites in The Netherlands has shown intrinsic biodegradation of HCH. At one site, breakdown products (monochlorobenzene, benzene and chlorophenol) were found in the core of the HCH-plume, whereas the HCH-concentration decreased over time and space. Characterisation of a second, industrial site indicated less intrinsic biodegradation and the need to stimulate biodegradation. In the laboratory, enhanced HCH degradation was tested with soil and groundwater material from both sites, and the required conversion to the intermediates benzene and monochlorobenzene was demonstrated. Furthermore, the biodegradation of these intermediates could be initiated by adding low amounts of oxygen (<5%). Adding nitrate enhanced this degradation. We hypothesise that this occurs through anaerobic nitrate reducing conversion of oxidised intermediates.At the non-industrial other site, intrinsic degradation took place, as shown in the laboratory experiments. Interpretation of the field data with computer codes Modflow and RT3D was performed. As a result of the modelling study, it has been proposed to monitor natural attenuation for several years before designing the final approach.At the industrial site, the results of the batch experiments are applied. Anaerobic HCH degradation to monochlorobenzene and benzene is stimulated via the addition of an electron donor.Infiltration facilities have been installed at the site to create an anaerobic infiltration zone in which HCH will be degraded, and these facilities are combined with the redevelopment of the site.  相似文献   

12.
Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Significant microbial reductive dechlorination of [1,2 14C] cis‐dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water‐only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron‐donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron‐donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration‐based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron‐donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix. © 2012 Wiley Periodicals, Inc.*  相似文献   

14.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

15.
The U.S. Department of Energy has generated liquid wastes containing radioactive and hazardous chemicals throughout the more than forty years of operation at its Hanford site in Washington State. Many of the waste components, including nitrate and carbon tetrachloride (CCl4), have been detected in the Hanford groundwater. In-situ bioremediation of CCl4 and nitrate is being considered to clean the aquifer. Preliminary estimates indicate that this technology should cost significantly less than ex-situ bioremediation and about the same as air stripping/granular activated carbon. In-situ bioremediation has the advantage of providing ultimate destruction of the contaminant and requires significantly less remediation time. Currently, a test site is under development. A computer-aided design tool is being used to design optimal remediation conditions by linking subsurface transport predictions, site characterization data, and microbial growth and contaminant destruction kinetics.  相似文献   

16.
Emulsified oils have been used to stimulate anaerobic bioremediation at hundreds of sites contaminated with chlorinated solvents, perchlorate, heavy metals, and nitrate. A simple spreadsheet‐based tool has been developed to assist in the design of injection‐only systems for distributing emulsified oils in barriers and area treatments. This tool allows users to quickly compare the relative costs and performance of different injection alternatives and identify a design that is best suited to site‐specific conditions. Contact efficiency is estimated using results of prior numerical model simulations and dimensionless scaling factors that relate the volume of oil and water injected to treatment‐zone dimensions. Sensitivity analysis results indicate that maximum oil retention is one of the most important factors controlling system performance and cost. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Denitrification experiments have provided data showing the pitfalls and successes in developing a sustainable injection/extraction system in a sand and gravel aquifer. Experiments increase in complexity from continuous injection at one well to automated‐pulsed eight well injections. In both continuous and pulsed injection of organic carbon, 40 mg NO3‐N l?1 was reduced below the detection limit of < 0.1 mg NO3‐N l?1 in the denitrification zones. Under continuous injection, accumulation of bacterial exudates in the vicinity of the injection well resulted in injection well clogging within ten days. Periodic cleaning of the injection well and the adjacent gravel matrix was accomplished by using a tool developed to circulate a cleaning solution composed of 5 percent H2O2 and 0.02 percent NaOCl; but, biofouling could not be eliminated. In the later experiments, acetate became the carbon amendment because ethanol promoted more biomass development. A specialized pulse injection procedure was developed to separate nitrate from acetate‐C and was successful in alleviating the proliferation of bacterial exudates without affecting the performance of the denitrification system. Using pulsed injection, a maximum of 72 percent nitrate reduction was accomplished in the extraction well water, and denitrification was sustained for three months without clogging. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
DuPont has developed a method to compare, on a consistent economic basis, in situ remediation technologies. The methodology employs a template site with a perchloroethylene plume 1000 ft long by 400 ft wide, and incorporates various aquifer thicknesses and depths. Variables considered in the methodology include duration of the remediation; estimated engineering and flow/transport modeling costs; equipment costs; and operation, maintenance, and monitoring costs. In this article, substrate-enhanced anaerobic bioremediation, intrinsic bioremediation, in situ permeable reactive barriers, and pump-and-treat systems are evalutated. Cost metrics include present cost, cost per pound of contaminant removed, and cost per 1000 gals treated, using a discounted cash-flow analysis. Costs of the remedial alternatives increase starting from intrinsic bioremediation, to substrate-enhanced anaerobic bioremediation, to a biological substrate-enhanced anaerobic barrier, to in situ permeable reactive barriers, to pump-and-treat systems with air stripping and carbon adsorption.  相似文献   

20.
In situ bioremediation was selected in the Record of Decision (ROD) as the remedial technology for a 29‐acre dilute, acidic and aerobic, chlorinated solvent plume (principally trichloroethylene [TCE] and 1,1‐dichloroethylene) for a Superfund site located in central New Jersey. Implementation of the remedy at full‐scale began in late 2010, using reductive dechlorination and bioaugmentation, and treatment has continued steadily over the last 9 years. The amendments injected include electron donor and alkaline (bicarbonate) buffer solution and, once anaerobic aquifer conditions became established, a bioaugmentation culture. Amendment injections occurred in multilevel injection wells (IWs), to maintain control over the vertical interval of amendment delivery. The areal coverage of the plume has been reduced by 59% based on the 10 µg/L TCE isocontour and the contaminant mass has been reduced by 79% through the 9 years of treatment. Lessons learned from this project include the need for bioaugmentation in the acidic aquifer and an efficient and effective manner of well construction and amendment injection using multiscreen single casing IWs and packer systems. Additional lessons learned include differences in longevity of the electron donor amendment versus the bicarbonate neutralization additive, and the need for varied amendment delivery techniques (IWs, direct injection, horizontal well installation) in selected lower permeable zones to attain treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号